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Abstract
This paper presents results of the numerous experiments on usability of well-established string distance metrics and some new variants
thereof for various name matching tasks in Polish.

1. Introduction
A frequently appearing problem in the context of

text processing technologies involves making a decision
whether two distinct strings refer to the same real-world
object. Name matching has been studied thoroughly in the
past and approaches ranging from linguistically oriented
ones (Morton, 1997) to very lightweight approximate-
string matching techniques have been proposed.

In this paper, we focus on exploring the usability of
the well-established string distance metrics and some new
variants thereof for matching name occurrences in highly
inflected languages. 1 In particular, we present results of
numerous experiments carried out on a Polish proper-name
dataset. Our work was inspired by the comprehensive stud-
ies on using string distance metrics for name matching
tasks presented recently in (Cohen et al., 2003b; Cohen
et al., 2003a; Christen, 2006). The main motivation of car-
rying out this research is the fact that processing highly
inflective languages adds another complication to name
matching. The intuitive way of combating the inflection
problem would be to lemmatize names, and then to apply
string-distance techniques which turned out to work fine
for inflection-poor languages like English. Unfortunately,
the lemmatization of proper names in Polish is knowledge
intensive and accuracy figures of more than 80% have not
been reported. For instance, lemmatization of full person
names might depend on several factors, e.g., (a) the gender
of the first name, (b) the part-of-speech information and
gender of the word which constitutes the surname, (c) ori-
gin/pronunciation of the name, which clearly leaves a lot
of space for ambiguities (Piskorski, 2005).

This paper is organized as follows. Section 2. in-
troduces string distance metrics, which were used in our
study. Next, in section 3. the results of the experiments are
described. Finally, a summary is given in section 4.

2. String Distance Metrics
In our experiments on using character-level string met-

rics 2 for name matching we used mainly the metrics ap-
plied by the database community for record linkage. The

1This work has been supported by the MEI grant no. 3 T11C
007 27 and by the PJWSTI grant ST/SI/06/2006.

2Distance (similarity) metrics map a pair of strings s and t
to a real number r, where a smaller (larger) value of r indicates
greater similarity.

point of departure constitutes the well-known Levenshtein
edit distance metric given by the minimum number of
character-level operations (insertion, deletion, or substitu-
tion) needed to transform one string into the other (Lev-
enshtein, 1965). There are several extensions to this basic
metric. The Needleman-Wunsch (Needleman and Wunsch,
1970) metric modifies the original one in that it allows
for variable cost adjustment to the cost of a gap, i.e., in-
sert/deletion operation and variable cost of substitutions.
Another variant considered here is the Smith-Waterman
metric (Smith and Waterman, 1981), which additionally
uses an alphabet mapping to costs. We tested two set-
tings for this metric namely, one which normalizes the
Smith-Waterman score with the length of the shorter string
and one which uses for the same purpose the Dice coeffi-
cient, i.e., the average length of strings compared (Smith-
Waterman-D). A further extension of the Smith-Waterman
metric introduces two extra edit operations, open gap and
end gap. The cost of extending the gap is usually smaller
than the cost of opening a gap, and this results in small
cost penalties for gap mismatches than the equivalent cost
under the standard edit distance metrics. We will re-
fer to the aforesaid metric as Smith-Waterman-AG. Fi-
nally, we created a variant thereof, which uses a character
substitution cost function adapted to Polish name declen-
sion 3 (Smith-Waterman-AG-PL). In general, the compu-
tation of most edit-distance metrics requires O(|s| · |t|).
We have also considered the recently introduced bag dis-
tance metric (Bartolini et al., 2002) which is a good ap-
proximation of the previously mentioned edit distance met-
rics, and is calculated (in linear time) as bagdist(s, t) =
max(|M(s)\M(t)|, |M(t)\M(s)|), where M(x) denotes
the multiset of the characters in x.

Good results for name-matching tasks (Cohen et al.,
2003b) have been reported using variants of the Jaro met-
ric (Winkler, 1999), which is not based on the edit-distance
model. It considers the number and the order of the com-
mon characters between two strings. Given two strings
s = a1 . . . aK and t = b1 . . . bL, we say that ai in s

3There are three different scores for substitution operation:
(a) exact match between characters (score +5), (b) approximate
match between similar characters (+3), where for Polish two
characters are considered similar if they both appear in one of
the sets: {a,e,i,o,u,y,a,ą,ę,ó},{c,ć},{s,ś},{n,ń},{l,ł},{k,c},{t,c},
(c) mismatch of characters (-5)



is common with t if there is a bj = ai in t such that
i − R ≤ j ≤ i + R, where R = bmax(|s|, |t|)/2c − 1.
Further, let s′ = a′1 . . . a′K be the characters in s which
are common with t (with preserved order of appearance in
s) and let t′ = b′1 . . . b′L be defined analogously. A trans-
position for s′ and t′ is defined as the position i such that
a′i 6= b′l. Let us denote the number of transposition for s′

and t′ as Ts′,t′ . The Jaro similarity is then calculated as:

J(s, t) =
1
3
· ( |s

′|
|s|

+
|t′|
|t|

+
|s′| − bTs′,t′/2c

|s′|
)

A Winkler variant thereof boosts the Jaro similarity for
strings with agreeing initial characters. It is calculated as:

JW (s, t) = J(s, t) + δ · boostp(s, t) · (1− J(s, t))

,where δ denotes the common prefix adjustment factor (de-
fault: 0.1) and boostp(s, t) = min(|lcp(s, t)|, p). Here
lcp(s, t) denotes the longest common prefix between s and
t. For multi-token strings we extended boostp to boost∗p.
Let s = s1 . . . sK and t = t1 . . . tL, where si (ti) represent
i-th token of s and t respectively, and let without loss of
generality L ≤ K. boost∗p is calculated as:

boost∗p(s, t) =
1
L
·
L−1∑
i=1

boostp(si, ti)+
boostp(sL, tL..tK)

L

We denote the metric which uses boost∗p as JWM . The
time complexity of ’Jaro’ metrics is O(|s| · |t|).

The q-gram metric (Ukkonen, 1992) is based on the
intuition that two strings are similar if they share a large
number of character-level q-grams. Let Gq(s) denote the
multiset of all q-grams of a string s obtained by sliding a
window of length q over the characters of s. 4 The q-gram
metric is calculated as:

q−grams(s, t) =
|Gq(s) ∩Gq(t)|

max(|Gq(s)|, |Gq(t)|)

An extension to this metric is to add positional infor-
mation, and to match only common q-grams that occur
within a maximum distance to each other (positional q-
grams) (Gravano et al., 2001). Further, (Keskustalo et al.,
2003) introduced skip-gram metric. It is based on the idea
that in addition to forming bigrams of adjacent charac-
ters, bigrams that skip characters are considered. Gram
classes are defined that specify what kind of skip-grams
are created, e.g. {0, 1} class means that normal bigrams
are formed, and bigrams that skip one character. The q-
gram type metrics can be computed in O(max{|s|, |t|}).

Considering the declension paradigm of Polish we also
considered a basic and time efficient metric based on the
longest common prefix information, which would intu-
itively perform well in the case of single-token names. It is
calculated as: CPδ(s, t) = (|lcp(s, t)|+ δ)2/|s| · |t|. The
symbol δ in CPδ(s, t) is an additional parameter for fa-
voring certain suffix pairs in s (t). We have experimented

4Since q-grams at the beginning and the end of the string can
have fewer than q characters, the strings are extended by adding
q − 1 unique initial and trailing characters to a string.

with two variants, CPδ1 and CPδ2 . In CPδ1 the value of
δ is set to 0. In CPδ2 , as a result of empirical study of the
data and the declension paradigm δ has been set to 1 if s
ends in: o,y,ą,ę, and t ends in an a. Otherwise δ is set to
0. For coping with multi-token strings, we tested a similar
metric called longest common substrings distance (LCS),
which recursively finds and removes the longest common
substring in the two strings compared. Let lcs(s, t) denote
the ’first’ longest common substring for s and t and let s−p

denote a string obtained via removing from s the first oc-
currence of p in s. The LCS metric is calculated as:

LCS(s, t) =

{
0 if |lcs(s, t)| ≤ φ

|lcs(s, t)|+ LCS(s−lcs(s,t), t−lcs(s,t))

The value of φ is usually set to 2 or 3. The time complex-
ity of LCS is O(|s| · |t|). We extended LCS by additional
weighting of the |lcs(s, t)|. The main idea is to penalize
longest common substrings which do not match the begin-
ning of a token in at least one of the compared strings. Let
α be the maximum number of non-whitespace characters,
which precede the first occurrence of lcs(s, t) in s or t.
Then, lcs(s, t) is assigned the weight:

wlcs(s,t) =
|lcs(s, t)|+ α−max(α, p)

|lcs(s, t)|+ α

where p has been experimentally set to 4. We denote the
’weighted’ variant of LCS as WLCS.

Finally, for multi-token strings we tested the recursive
schema, known also as Monge-Elkan distance (Monge and
Elkan, 1996). Let us assume that the strings s and t are
broken into substrings (tokens), i.e., s = s1 . . . sK and
t = t1 . . . tL. The intuition behind Monge-Elkan mea-
sure is the assumption that si in s corresponds to a tj with
which it has highest similarity. The similarity between s
and t equals the mean of these maximum scores. Formally,
the Monge-Elkan metric is defined as follows, where sim
denotes some secondary similarity function.

Monge−Elkan(s, t) =
1
K

·
K∑

i=1

max
j=1...L

sim(si, tj)

Inspired by the multi-token variants of the JW metric pre-
sented in (Christen, 2006) we introduced two additional
metrics, which are similar in spirit to the Monge-Elkan
metric. The first one, Sorted-Tokens is computed in two
steps: (a) firstly the tokens constituting the full strings are
sorted alphabetically, and (b) an arbitrary metric is applied
to compute the similarity of the ’sorted’ strings. The sec-
ond metric, Permuted-Tokens compares all possible permu-
tations of tokens constituting the full strings and returns the
maximum calculated similarity value.

3. Experiments
This section describes our experiments on using differ-

ent string metrics for the entity matching task. We define
the problem as follows. Let A, B and C be three sets of
strings over some alphabet Σ, with B ⊆ C. Further, let
f : A → B be a function representing a mapping of in-
flected forms into their corresponding base forms. Given,



A and C (the latter representing the search space), the task
is to construct an approximation of f , namely f̂ : A → C.
If f̂(a) = f(a) for a ∈ A, we say that f̂ returns a correct
answer for a, otherwise, f̂ is said to return an incorrect an-
swer. Secondly, we defined an additional task consisting of
constructing another approximation of f , namely function
f∗ : A → 2C , where f∗ is said to return a correct answer
for a ∈ A if f(a) ∈ f∗(a).

3.1. Test Data
For the experiments on name matching we have used

three resources: (a) a lexicon of the most frequent Pol-
ish first names (PL-FIRST-NAMES) consisting of pairs
(in, base), where in is an inflected form and base
stands for the corresponding base form, (b) an analo-
gous lexicon of inflected forms of country names in Pol-
ish (PL-COUNTRIES) 5, and (c) a similar lexicon of in-
flected full person names (first name + surname) (PL-
FULL-NAMES). The latter resource was created semi-
automatically as follows. We have automatically extracted
a list of 22485 full person-name candidates from a corpus
of 15,724 on-line news articles from Rzeczpospolita, one
of the leading Polish newspapers, via using PL-F-NAMES
lexicon and an additional list of 58038 uninflected foreign
first names. Subsequently, we have selected an excerpt of
circa 1900 entries (inflected forms) from this list. 1/3 of
this excerpt are the most frequent names appearing in the
corpus, 1/3 are the most rare names, and finally 1/3 of the
entries were chosen randomly.

In the basic experiments we simply used the base forms
as the search space, however we produced some variants of
PL-FIRST-NAMES and PL-FULL-NAMES resources via
enriching the search space by adding base forms of foreign
first names and a complete list of full names extracted from
the Rzeczpospolita corpus respectively. Table 1 gives an
overview of our test datasets. 6

Dataset #inflected #base search space
PL-F-NAMES 5941 1457 1457
PL-F-NAMES-2 5941 1457 25490
PL-COUNTRIES 1765 220 220
PL-FULL-NAMES 1900 1219 1219
PL-FULL-NAMES-2 1900 1219 2351
PL-FULL-NAMES-3 1900 1219 20000

Table 1: Dataset used for the experiments

3.2. Evaluation Metrics
Since for a given string more than one answer can be

returned, we measured the accuracy in three ways. Firstly,
we calculated the accuracy with the assumption that a
multi-result answer is not correct and we defined (all-
answer accuracy) (AA) measure which penalizes the ac-
curacy for multi-result answers. Secondly, we measured

5This resource contains a larger number of multi-words since
full names of some countries consist of more than one token.

6Pairs, where inflected form is identical with the base form
have been excluded from the experiments since in such a case
finding an answer is straightforward.

the accuracy of single-result answers (single-result accu-
racy (SR)) disregarding the multiple-result answers. Fi-
nally, we used a somewhat weaker measure which treats a
multi-result answer as correct if one of the results in the
answer is correct (relaxed-all-answer accuracy (RAA)).

Let s denote the number of strings, for which a sin-
gle result was returned. Analogously, m is the number of
strings for which more than one result was returned. Fur-
ther, let sc and mc denote the number of correct single-
result answers returned and the number of multi-result an-
swers containing at least one correct result respectively.
The accuracy metrics are computed as: AA = sc/(s+m),
SR = sc/s, and RAA = (sc + mc)/(s + m).

3.3. Matching First Names
First experiment was run on the PL-F-NAME dataset

with the non-recursive string distance metrics. The re-
sults of the accuracy evaluation 7 are given in table 2. The
first three columns give the accuracy figures, whereas the
columns labeled with AV and MAX give the average and
maximum number of results returned in an answer.

Metric AA SR RAA AV MAX
Bag Distance 0,476 0,841 0,876 3,02 19
Levenshtein 0.708 0.971 0.976 2.08 8
Needleman-Wunsch 0.728 0.833 0.826 3 20
Smith-Waterman 0.625 0.763 0.786 3.47 74
Smith-Waterman-AG 0.603 0.728 0.749 3.36 74
Jaro 0,775 0,820 0,826 2,06 4
Jaro-Winkler 0,820 0,831 0,831 2,03 3
2-grams 0,701 0,972 0,978 2,10 17
3-grams 0,712 0,974 0,981 2,10 14
4-grams 0,714 0,974 0,981 2,09 14
pos 2-grams 0,717 0,975 0,982 2,09 15
pos 3-grams 0,721 0,976 0,982 2,09 14
pos 4-grams 0,712 0,976 0,982 2,093 14
{0, 2} skip grams 0,873 0,935 0,936 2,14 6
LCS 0,696 0,971 0,977 12,69 550
WLCS 0,731 0,983 0,986 2,97 549
CPδ1 0.829 0.843 0.844 2.11 3
CPδ2 0.947 0.956 0.955 2.18 3

Table 2: Results for PL-F-NAMES

Interestingly, the simple linguistic-aware common
prefix-based measure turned out to work best in the AA
category, whereas WLCS metric is the most accurate one
in the SR and RAA categories. Thus, a combination of
the two seems to be a reasonable solution to further im-
prove the performance, i.e., if WLCS returns a single an-
swer, return it, otherwise return the answer of CPδ2 . Fur-
ther, the time-efficient skip grams metric performed sur-
prisingly good in the AA category. Noteworthy, circa 10%
of the inflected first name forms in Polish are ambiguous
w.r.t. gender (e.g., Stanisława - genitive form of the male
name Stanisław vs. nominative form of the female name
Stanisława), which illustrates additional complexity.

Clearly, the AA accuracy in the experiment run on the
PL-F-NAME-2 (with the large search space) was signifi-
cantly worse. However, the SR accuracy for some of the
metrics is still acceptable. The top ranking metrics with
respect to SR and AA accuracy are given in table 3.

7In case of metrics which have parameters, e.g., positional q-
grams, we just give the best result achieved.



Metric SR AA Metric SR AA
WLCS 0.893 0.469 2-grams 0.810 0.398
CPδ2 0.879 0.855 LCS 0.768 0.340
pos 2-grams 0.876 0.426 CPδ1 0.668 0.600
skip grams 0.822 0.567 JW 0.620 0.560

Table 3: Top results for PL-F-NAMES-2

3.4. Matching Country Names
The next test was carried out on the PL-COUNTRIES,

which contains many multi-token strings, where the num-
ber of tokens the strings contain of varies. We considered
also Monge-Elkan metric, Sorted-Tokens and Permuted-
Tokens to better cope with multi-token strings. The afore-
mentioned metrics were tested with different ’internal’
metrics. The results are given in table 4, 5, 6 and table 7.

Metric AA SR RAA AV MAX
Bag distance 0,369 0,461 0,402 2,6 7
Levenshtein 0.564 0.590 0.586 2.94 12
Needleman-Wunsch 0.720 0.779 0.763 2.95 11
Smith-Waterman 0.904 0.936 0.928 3.34 10
Smith-Waterman-D 0.849 0.858 0.858 2 2
Smith-Waterman-AG 0.799 0.805 0.802 2.45 4
Smith-Waterman-AG-PL 0.793 0.797 0.797 2.22 3
Jaro 0.432 0.437 0.436 2 2
JW 0,452 0,457 0,452 2,06 3
JWM 0,453 0,458 0,453 2,06 3
2-grams 0,665 0,693 0,689 2,72 13
pos 2-grams 0,425 0,470 0,440 4,08 11
skip-grams 0,662 0,681 0,672 2,13 3
LCS 0.749 0.781 0.783 54.61 189
WLCS 0.530 0.545 0.550 80.16 189
CPδ1 0.416 0.421 0.420 2.35 3

Table 4: Results for PL-COUNTRIES with ’basic’ metrics

Internal Metric AA SR RAA AV MAX
Bag Distance 0,461 0,602 0,526 3,05 8
Levenshtein 0.573 0.639 0.593 2.79 4
Needleman-Wunsch 0.532 0.663 0.577 3.08 11
Smith-Waterman 0.205 0.494 0.291 4.94 10
Smith-Waterman-D 0.620 0.672 0.627 2.94 4
Smith-Waterman-AG 0.607 0.633 0.615 3.02 4
Smith-Waterman-AG-PL 0.584 0.605 0.591 3 4
Jaro 0,552 0,624 0,563 3,02 5
JW 0.557 0.623 0.563 3.07 5
4-grams 0,625 0,813 0,665 3,11 8
pos 4-grams 0,629 0,838 0,668 3,12 8
{0, 1}-skip-grams 0.619 0.664 0.637 2.94 4
{0, 1, 2}-skip-grams 0.610 0.691 0.630 2.97 4
LCS 0,620 0,813 0,672 4,59 189
WLCS 0,636 0,837 0,688 4,55 189
CPδ1 0.694 0.868 0.716 3.08 4
CPδ2 0.631 0.845 0.669 3.13 4

Table 5: Results for PL-COUNTRIES with Monge-Elkan

Surprisingly, the best results were achieved by the
Smith-Waterman metrics. On the contrary, Monge-Elkan
performed rather badly (probably due to the varying num-
ber of tokens the names cosist of). Using CPδ1 as inter-
nal metric yielded the best results. The results for Sorted-
Tokens and Permuted-Tokens were significantly better,
with Smith-Waterman being the the best internal metric.

3.5. Matching Full Person Names
Finally, we have made experiments for full person

names, each represented as two tokens. It is important to

Internal Metric AA SR RAA AV MAX
Bag Distance 0,370 0,461 0,402 2,6 7
Levenshtein 0.614 0.656 0.640 2.56 11
Needleman-Wunsh 0.483 0.527 0.518 3.25 13
Smith-Waterman 0.898 0.931 0.919 2.84 10
Smith-Waterman-D 0.835 0.891 0.838 2.01 3
Smith-Waterman-AG 0.801 0.826 0.802 2.06 4
Smith-Waterman-AG-PL 0.784 0.800 0.786 2.06 3
Jaro 0,757 0,767 0,768 2,19 3
JW 0,769 0,774 0,772 2,44 3
JWM 0,770 0,774 0,773 2,44 3
4-grams 0,768 0,821 0,789 2,51 12
pos 4-grams 0,742 0,804 0,765 9,48 19
skip-grams 0,709 0,729 0,722 2,02 3
LCS 0,738 0,829 0,768 5,32 189
WLCS 0,741 0,817 0,750 5,86 189

Table 6: Results for PL-COUNTRIES with Sorted-Tokens

Internal Metric AA SR RAA AV MAX
Bag Distance 0,370 0,461 0,402 2,6 7
Levenshtein 0.543 0.603 0.566 2.3 14
Needleman-Wunsh 0.618 0.663 0.650 2.71 11
Smith-Waterman 0.895 0.921 0.916 2.93 10
Smith-Waterman-D 0.798 0.803 0.801 2 2
Smith-Waterman-AG 0.760 0.766 0.763 2.5 5
Smith-Waterman-AG-PL 0.749 0.754 0.752 2.2 3
Jaro 0,786 0,800 0,793 2,21 4
JW 0,790 0,803 0,793 2 2
JWM 0,866 0,872 0,866 2 2
4-grams 0,767 0,793 0,782 2,92 8
pos 4-grams 0,769 0,796 0,785 2,90 9
skip-grams 0,693 0,718 0,707 2,09 4
LCS 0,710 0,732 0,732 14,93 189
WLCS 0,781 0,801 0,801 16,64 189

Table 7: Results PL-COUNTRIES with Permuted-Tokens

note that the order of the first name and the surname in
some of the entities in our test datasets is swapped, which
poses a complicacy since some surnames may also func-
tion as a first name. Nevertheless, the results of the ex-
periment on PL-FULL-NAMES given in table 8 are nearly
optimal. JWM , WLCS, LCS, skip grams and Smith-
Waterman were among the ‘best’ metrics. The recursive

Internal Metric AA SR RAA AV MAX
Bag Distance 0,891 0,966 0,966 3,13 11
Levenshtein 0.951 0.978 0.970 4.59 18
Smith-Waterman 0,965 0,980 0,975 3,5 5
Smith-Waterman-D 0.972 0.985 0.980 3.62 5
Smith-Waterman-AG 0.970 0.982 0.975 3.75 5
Smith-Waterman-AG-PL 0.970 0.982 0.978 3.75 5
Needleman-Wunsh 0.896 0.956 0.935 2.88 11
Jaro 0,957 0,970 0,964 3,54 5
JW 0,952 0,964 0,958 3,74 5
JWM 0,962 0,974 0,968 3,74 5
2-grams 0,957 0,988 0,987 3,915 10
pos 3-grams 0,941 0,974 0,966 4,32 23
skip-grams 0,973 0,991 0,990 5,14 10
LCS 0,971 0,992 0,990 5,7 13
WLCS 0,975 0,993 0,992 6,29 12

Table 8: Results for PL-FULL-NAMES

metrics scored in general only slightly better than the basic
metrics. The best results oscillating around 0.97, 0.99, and
0.99 for the three accuracy metrics were obtained using
LCS, WLCS, JWM, CPδ and some Smith-Waterman vari-
ants as internal metrics.

We have further compared the performance of
the aforementioned ’recursive’ metrics on PL-FULL-
NAMES-2, which has a larger search space. The most sig-



nificant results for the AA accuracy are depicted in table 9.
The JWM and Smith-Waterman-D metric seem to be the
best choice as an internal metric, whereas WLCS, CPδ2

and Jaro perform slightly worse.

Internal M. Monge-Elkan Sorted-Tok. Permuted-Tok.
Bag Distance 0,868 0,745 0,745
Jaro 0,974 0,961 0,968
JWM 0,976 0,976 0,975
SmithWaterman 0.902 0.972 0.967
Smith-Waterman-D 0.974 0.976 0.976
Smith-Waterman-AG 0.958 0.966 0.955
Smith-Waterman-AG-PL 0.965 0.971 0.961
Needleman-Wunsch 0.808 0.903 0.857
3-grams 0,848 0,930 0,911
pos 3-grams 0,855 0,928 0,913
skip-grams 0,951 0,967 0,961
LCS 0,941 0,960 0,951
WLCS 0,962 0,967 0,967
CPδ1 0.969 n.a. n.a.
CPδ2 0.974 n.a. n.a.

Table 9: Results of AA accuracy for PL-FULL-NAMES-2

In our last experiment we selected the ‘best’ metrics so
far and tested them against PL-FULL-NAMES-3 (largest
search space). The top results for non-recursive metrics are
given in Table 10. Smith-Waterman-D and JWM turned
out to achieve the best scores in the AA accuracy, whereas
WLCS is far the best metric w.r.t. SR accuracy. The top

Metrics AA SR RAA AV MAX
Levenshtein 0.791 0.896 0.897 2.20 9
Smith-Waterman 0.869 0.892 0.889 2.35 6
Smith-Waterman-D 0.899 0.911 0.910 2.08 3
Smith-Waterman-AG 0.840 0.850 0.850 2.04 3
Smith-Waterman-AG-PL 0.842 0.857 0.854 2.09 3
JW 0.791 0.807 0.802 2.11 3
JWM 0.892 0.900 0.901 2.11 3
skip-grams 0.852 0.906 0.912 2.04 4
LCS 0.827 0.925 0.930 2.48 46
WLCS 0.876 0.955 0.958 2.47 44

Table 10: Results for PL-FULL-NAMES-3

scores achieved for the recursive metrics on PL-FULL-
NAMES-3 were somewhat better. In particular, Monge-
Elkan performed best with CPδ2 as internal metric (0.937
AA and 0.947 SR) and slightly worse results were ob-
tained with JWM and WLCS. Sorted-Tokens scored best
in AA and SR accuracy with Smith-Waterman-D (0.904)
and WLCS (0.949), resp. For Permuted-Tokens using JWM
and WLCS yielded the best results, namely 0.912 (AA)
and 0.948 (SR), resp. Interestingly, the Smith-Waterman
metrics used as internal metric resulted in lower values
of SR accuracy than WLCS and JWM. Comparing all the
results for PL-FULL-NAMES-3 reveals that a further im-
provement could be achieved via combining of WLCS and
Monge-Elkan with CPδ2 , i.e., if WLCS returns a single
answer, return it, otherwise return the answer of Monge-
Elkan with CPδ2 . The top results for recursive metrics in
AA and SR accuracy are summarized in table 11.

4. Summary
In this paper we investigated the usability of string

distance metrics for matching Polish names of different
type. For first names, simple common prefix (CPδ2)

Metric AA Metric SR
ME & CPδ2 0.937 ST & WLCS 0.949
ME & JWM 0.923 PT & WLCS 0.948
ME & CPδ1 0.921 ME & CPδ2 0.947
PT & JWM 0.914 ME & WLCS 0.939
ST & Smith-Waterman-D 0.911 ME & JWM 0.936
ME & Smith-Waterman-D 0.908 ME & CPδ1 0.935
ST & JWM 0.904 PT & JWM 0.927
PT & Smith-Waterman-D 0.899 ST & Smith-Waterman-D 0.924

Table 11: Results for PL-FULL-NAMES-3 with Monge-
Elkan, Sorted-Tokens and Permuted-Tokens

metric obtains the best results for all-answer accuracy,
whereas the WLCS measure provides the best score for
the single-result accuracy. A further improvement could
be achieved via combining the aforementioned metrics.
As for country names, consisting of varying numbers of
tokens, the Smith-Waterman metrics perform best among
the basic metrics and also as an internal metric for Sorted-
Tokens and Permuted-Tokens. In case of full person names,
the basic metrics which yielded the best results include
WLCS, JWM , Smith-Waterman-D and CPδ2 . However,
the best overall all-answer accuracy was achieved with the
Monge-Elkan with CPδ2 , whereas for single-result accu-
racy WLCS performed best. Again, combining the two
latter metrics would possibly improve the accuracy.

The results presented here constitute a kind of handy
guideline for developing a fully-fledged solution to refer-
ence matching for Polish. To the authors knowledge the
presented work is the first comprehensive comparison of
various string distance metrics applied to name matching
tasks in Polish. In proximate step, we will test statistical
significance of the results presented in this paper.
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