
ExPRESS – Extraction Pattern Recognition
Engine and Specification Suite

Jakub Piskorski

Joint Research Center of the European Commission
Web and Language Technology Group of IPSC
T.P. 267, Via Fermi 1, 21020 Ispra (VA), Italy

Jakub.Piskorski@jrc.it

August 30, 2007

Abstract

The emergence of information extraction (IE) oriented pattern engines has been
observed during the last decade. Most of them exploit heavily finite-state devices.
This paper introduces EXPRESS – a new extraction pattern engine, whose rules
are regular expressions over flat feature structures. The underlying pattern language
can be seen as a blend of two previously introduced IE oriented pattern formalisms,
namely, JAPE, used in the widely known GATE system, and the unification-based
XTDL formalism used in SProUT. A brief and technical in nature overview of
EXPRESS, its pattern language and the pool of its native linguistic components is
given. Further, the implementation of the grammar interpreter is addressed too.

1 Introduction
The task of information extraction (IE) is centered around extracting specific structured
information from free-text documents. The classical IE tasks focus on detecting enti-
ties, identifying relations which hold among them, and extracting events. Typically, the
major step in the process of retrieving the sought-after information consists of applying
a cascade of so called extraction patterns. Recently, the emergence of IE-oriented pat-
tern specification languages has been observed. These languages utilize various types
of formalisms, ranging from character-level regular expressions to unification-based
formalisms. Due to efficiency reasons, finite-state based pattern engines are the most
prominent ones being used.

This paper introduces EXPRESS (Extraction Pattern Recognition Engine and Spec-
ification Suite) – a new extraction pattern engine, whose rules are regular expressions
over flat feature structures, i.e., non-recursive feature structures, where features are
string valued. The rule specification language is a blend of two previously introduced
IE-oriented grammar formalisms, namely, JAPE (Cunningham, Maynard, and Tablan

1



2 Jakub Piskorski

2000) used in the widely known GATE platform and the unification-based formalism
XTDL deployed in SProUT (Drożdżyński, Krieger, Piskorski, Schäfer, and Xu 2004).
The main motivation beyond the development of EXPRESS comes from: (a) a need of
an efficient pattern engine for extracting facts from vast amount of news articles col-
lected on a daily basis from the web by Europe Media Monitor (EMM) system (Best,
van der Goot, Blackler, Garcia, and Horby 2005), and (b) due to efficiency problems
encountered when using other freely available IE-oriented pattern engines, including
the two aforementioned ones.

The rest of this paper is organized as follows. We start in section 2 with some basic
definitions and notions used throughout this paper. Next, in section 3 a brief overview of
the related work is given. Subsequently, in section 4 EXPRESS, its pattern specification
language and its core native linguistic components are described. Efficiency issues
in the context of compiling and processing the grammars are addressed in section 5.
Section 6 gives few technical details about implementation and provides some figures
concerning the run-time behavior. We end up with a summary in section 7.

2 Basic Definitions and Notions
A deterministic finite-state automaton (DFSA) is a quintuple M = (Q,Σ, δ, q0, F ),
where Q is a finite set of states, Σ is the alphabet of M , δ : Q×Σ → Q is the transition
function, q0 is the initial state and F ⊆ Q is the set of final states. The transition
function can be extended to δ∗ : Q × Σ∗ → Q ∪ {⊥} by defining δ∗(q, ε) = q,
δ∗(q, a) = δ(q, a) if δ(q, a) is defined or δ∗(q, a) = ⊥ otherwise, and δ∗(q, wa) =
δ(δ∗(q, w), a) for a ∈ Σ and w ∈ Σ∗. The language accepted by a DFSA M is defined
as L(M) = {w ∈ Σ∗|δ∗(q0, w) ∈ F}. Languages accepted by finite-state automata
are also called regular. The union and concatenation of two regular languages L1 and
L2 is denoted as L1 ∪ L2 and L1 · L2 respectively. A path in a DFSA M is a sequence
of triples 〈(p0, a0, p1), . . . , (pk−1, ak−1, pk)〉, where (pi−1, ai−1, pi) ∈ Q×Σ×Q and
δ(pi, ai) = pi+1 for 1 ≤ i < k. The string a0a1 . . . ak is the label of the path. Among
all DFSAs recognizing the same language, there is always one which has the minimal
number of states. We call such an automaton minimal (MDFSA). The definition of
nondeterministic finite-state automata (NFSA) is analogous, with the difference that
transition function is set-valued, i.e., more than one transition from a given state q
labeled with a symbol a ∈ Σ might exist.

Next, we define flat feature structures. A type space is a triple Φ = (ΣT ,ΣF ,∆),
where ΣT is a finite set of types, ΣF is a finite set of features and ∆ : ΣT → 2ΣF is
the total type specification function, i.e., ∆ maps types to their features. We say that a
feature f ∈ ΣF is appropriate for the type α if f ∈ ∆(α), otherwise f is inappropriate
for the type α. A flat feature structure (FFS) in the type space Φ = (ΣT ,ΣF ,∆) is a
pair s = (α, val), where α ∈ ΣT (α is a type), and val : ∆(α) → Σ+

V ∪ {>} is a
feature-value mapping, where ΣV is a finite set of symbols. The symbol > is used to
denote unspecified (undefined) feature values, i.e., vals(f) = > means that the value
of f is unspecified for s. We say, that two FFSs s = (αs, vals) and t = (αt, valt)
match in the type space Φ if and only if: (a) αs, αt ∈ ΣT , (b) αs = αt, and (c)
∀f ∈ ∆(αs) : vals(f) = valt(f) or vals(f) = > or valt(f) = >. For the sake



3

of simplicity, we denote a FFS s = (α, val) also as [f1 : v1 . . . fk : vk]α, where
∀1 ≤ i ≤ k : fi is appropriate for α and vi = val(fi).

We also refer in this paper to typed feature structures (TFS), which are related to
record structures in programming languages and are widely used as a data structure for
NLP. Their formalizations (Copestake 2000) include multiple inheritance and subtyp-
ing, which allow for terser descriptions.

3 Related Work

The idea of using regular expressions over more complex structures is not new and
has been considered by several authors, e.g., (Neumann, Backofen, Baur, Becker, and
Braun 1997) uses regular grammars with predicates over morphologically analyzed
tokens. Further, (van Noord and Gerdemann 2001) introduces finite-state transduc-
ers with arbitrary predicates over symbols and discusses various operations on such
finite-state devices. In particular, during the last decade, several high-level IE-oriented
specification languages for creating patterns have been developed, e.g., (Appelt and
Onyshkevych 1998) introduced CPSL designed as a language for specifying finite-state
grammars over arbitrary annotations. The widely-known GATE platform, exploited
heavily for development of IE components, comes with JAPE – Java Annotation Pat-
tern Engine (Cunningham, Maynard, and Tablan 2000), which is similar in spirit to
CPSL. A JAPE grammar consists of pattern-action rules. The left-hand side (LHS) of
a rule is a regular expression over arbitrary atomic feature-value constraints, while the
right-hand side (RHS) constitutes a so-called annotation manipulation statement which
specifies the output structures to be produced once the pattern matches. Additionally,
the RHS may call native code, which on the one side provides a gateway to the outer
world, but on the other side makes pattern writing difficult for non-programmers.

A somewhat more declarative and linguistically-oriented pattern specification for-
malism called XTDL is used in SPROUT (Drożdżyński, Krieger, Piskorski, Schäfer,
and Xu 2004), a lesser known IE framework. It can be seen as an amalgam of finite-
state and unification-based grammar formalisms. In XTDL the LHS of a rule is a
regular expression over typed feature structures (TFS) with functional operators and
coreferences1, and the RHS is a TFS, specifying the output production. Functional
operators are primarily utilized for forming the slot values in the output structures and,
secondly, they can act as Boolean-valued predicates, which allows for introducing com-
plex constraints in the rules. The aforementioned features make XTDL more amenable
formalism than JAPE since writing ‘native code’ is eliminated and coreferencing allows
for terser descriptions.

Clearly, rich annotations on automata edges allow for compact descriptions, but
standard finite-state optimization and processing methods are hardly applicable. Al-
though, efficient processing techniques for both JAPE (Japec 2006) and SPROUT’s
XTDL (Drożdżyński, Krieger, Piskorski, Schäfer, and Xu 2004) have been developed,
to the authors knowledge and experience processing even moderate-size grammars with

1Coreferences express structural identity, create dynamic value assignments, and serve as means of data
transfer from LHS to RHS of a pattern



4 Jakub Piskorski

person:=[NAME,FIRST_NAME,LAST_NAME,INITIAL,AMOUNT,SEX]
person_group:=[NAME,AMOUNT,QUANTIFIER]
violent_event:=[TYPE,METHOD,ACTOR,VICTIM]

Figure 1: Type declaration in EXPRESS

the aforementioned engines remains a bottle-neck. 2 In particular, processing XTDL
patterns involves unification, a rather expensive operation.

Some other IE-oriented pattern languages are surveyed in (Muslea 1999), but since
most of them are bound to a specific type of information and exhibit somewhat black-
box character, we do not discuss them any further.

4 ExPRESS

4.1 Overview
EXPRESS is a pattern engine which allows for specifying and processing cascaded
finite-state grammars, where grammar rules are regular expressions over feature struc-
tures. It has been mainly designed for tackling IE tasks. EXPRESS consists basically
of a grammar parser and a cascaded-grammar interpreter. A cascaded grammar specifi-
cation is divided into three parts: (a) types declaration, (b) a set of grammar definitions
and (c) a workflow specification. Types declaration part is a list of all types and appro-
priate features for these types, which are used in the grammar(s). In the type declaration
example in figure 1, three types are introduced, namely person, person_group and
violent_event, where for each of them a list of appropriate features is specified.

A single grammar definition consists of two parts: a grammar configuration part
and a rule definition part. In the configuration part, a list of arbitrary processing re-
sources can be specified, which will be applied before the interpreter applies the gram-
mar. These components provide the grammar interpreter with a stream of input flat
feature structures represented as a list of disjunctions of FFSs. The list of available
components and the task of integration of external components is addressed in sec-
tion 4.3. Further, for each grammar a different search strategy can be chosen. Currently
the following strategies are supported: (a) longest-match, (b) all-matches, and (c) all-
longest-matches (longest-match strategy applied at each position in the input). Finally,
the last item in the configuration part specifies the output production option. Three
alternative options are provided: (a) return only structures produced via grammar appli-
cation, (b) additionally to (a) return also feature structures produced by other process-
ing modules applied at the same level, (c) like (b), with the difference that only those
feature structures produced by other processing modules are returned, which were not
consumed by the application of the grammar. The simplified example in figure 2 gives
an idea of the syntax of a single grammar. The rule specification format is described in
detail in section 4.2.

2There are several implementations of JAPE. We did not test the recently developed JAPEC version (Japec
2006), which is supposed to be 2-5 times faster than the original implementation.



4.2 Rule Specification Language 5

SETTINGS:
{ MODULES: <Tokenizer>, <Morphology>, <Gazetteer>
SEARCH_MODE: longest_match
OUTPUT: grammar_only

}
RULES:
R1
.
.
RN

Figure 2: Syntax of a single grammar

Finally, the last part of the input to the parser, namely workflow specification, is a
sequence of grammar names, which defines the order in which the grammars are ap-
plied by the interpreter. In addition, each grammar name, may be accompanied by a
file, which specifies the priorities for the rules in the corresponding grammar. Thus,
experimenting with different prioritization set-ups is more elegant than in JAPE, where
priorities are encoded directly in the rules (XTDL also separates the prioritization set-
tings from the grammars). If there are several rules which match and have the same
priority, then all output structures are returned by the grammar interpreter, unless the
output structures are identical. In the latter case only one instance is returned.

4.2 Rule Specification Language
This subsection focuses on the particularities of the rule specification formalism of EX-
PRESS, which is similar in spirit to JAPE, but also encompasses some features and
syntax borrowed from XTDL. The LHS of a rule is a regular expression over flat fea-
ture structures (FFS), i.e., non-recursive TFS without coreferencing, where features are
string-valued and unlike in XTDL types are not ordered in a hierarchy (see 2). On
the LHS of a rule variables can be tailored to the string-valued attributes in order to
facilitate information transport into the RHS, etc. Further, like in XTDL, functional
operators are allowed on the RHSs for manipulating slot values and for establishing
contact with the ‘outer world’. They can also be deployed as boolean-valued predi-
cates. There is a predefined set of available functional operators, and new ones can be
added by simply implementing an appropriate programming interface by the grammar
developer. Finally, we adapted the JAPE’s feature of associating patterns on the LHSs
with multiple actions (labeling), i.e., producing more than one annotation (eventually
nested) for a given text fragment. 3 A rule for matching person names presented in
figure 3 illustrates the syntax. This rule matches a sequence consisting of: a structure of
type dictionary (output of the dictionary look-up tool) representing the first name,
followed by an optional initial (a sequence of dictionary and token structures),

3XTDL allows only for producing single output structures and does not provide the labeling facility, i.e.,
output structure correspond to the entire text fragment matched by the LHS pattern. However, there is a
‘dirty’ workaround consisting of accessing positional information of single feature structures matched by the
LHS and using such information for redefining start/end position of the output structure.



6 Jakub Piskorski

person :> ((dictionary & [TYPE: "first_name",
SURFACE: #first])

(dictionary & [TYPE: "initial",
SURFACE: #in]

token & [SURFACE: "."]) ?
(token & [TYPE: "firstCapital",

SURFACE: #last])):name
-> name: person & [NAME: #full_name,

FIRST_NAME: #first,
LAST_NAME: #last,
INITIAL: #in
AMOUNT: "1"]

& #full_name := ConcWithBlanks(#first,#in,#last)
& ValidatePersonName(#full_name).

Figure 3: A rule for recognition of person names

and another structure representing a capitalized token (last name). The symbol & links
a type name of the FFS with a list of feature-value pairs representing the constraints
which have to be fulfilled. It should not be confused with the same symbol denot-
ing unification in XTDL. The symbols #first, #in and #last establish variable
bindings to the surface forms of the matched text fragments. Further, the label name
on the LHS specifies the start/end position of the action defined on the RHS of the
rule. This action produce a structure of type person, where the value of the slots
FIRST_NAME , LAST_NAME and INITIAL is created via accessing the variables
#first, #in and #last resp. The value of the NAME slot is computed via a call
to a functional operator ConcWithBlanks() which concatenates its arguments and
inserts a space character between them. Finally, the RHS contains a call to a functional
operator ValidatePersonName() which acts as a boolean predicate and contacts
some external mechanism (i.e., morphological person name filtering) which estimates
whether the current name is likely to be a person name or not, and returns an appropri-
ate value. It is important to note that in order for a rule to match, all boolean-valued
predicates in the RHS of the rule must hold.

Another example of a rule that matches information concerning actors and victims
in violent events, where a person or a group thereof is killed by another human body, is
given in figure 4. This rule matches a sequence consisting of: a FFSs of type person
or person_group (the disjunction is denoted with ‘|’) representing a human(s) who
is (are) the victim of the event, followed by a phrase in passive form, which triggers a
‘killing’ event (dictionary look-up), and another structure representing the actor (person
or group of persons). There are three labels on the LHS, namely victim, killer,
and event, which produce structures of type dead, actor and violent_event
respectively. In case of the dead structure, the quantifier (variable #q1) must not
be a ‘zero’ quantifier. This constraint is express in the rule via the boolean predicate
IsNonZeroQuantifier. The rule described above matches the text fragment Most
of the 230 Talibani were shot by the US troops and produces three output structures de-
picted in figure 5. On the contrary, the text fragment None of the Taliban were killed by



4.2 Rule Specification Language 7

killing_event :> ((person_group & [NAME: #n1,
AMOUNT: #a1,
QUANTIFIER: #q1]

| person & [NAME: #n1,
AMOUNT: #a1]):victim

(dictionary & [TYPE: "death_trigger",
FORM: "passive"
METHOD: #m])

(person_group & [NAME: #n2,
AMOUNT: #a2,
QUANTIFIER: #q2]

| person & [NAME: #n2,
AMOUNT: #a2]):killer

):event
-> killer: actor & [NAME: #n2,

AMOUNT: #a2,
QUANTIFIER: #q2],

victim: dead & [NAME: #n1,
AMOUNT: #a1,
QUANTIFIER: #q1]

& IsNonZeroQuantifier(#q1),
event: violent_event & [TYPE: "killing",

METHOD: #m,
ACTOR: #n2,
VICTIM: #n1].

Figure 4: A rule for violent event recognition

dead & [NAME: "Talibani", AMOUNT: "230", QUANTIFIER: "Most of"]
actor & [NAME: "US troops"]
violent_event & [TYPE: "killing",

METHOD: "shooting",
ACTOR: "US troops",
VICTIM: "Talibani"].

Figure 5: The output structures produced by the rule in figure 4 when matching the text
fragment Most of the 230 Talibani were shot by the US troops



8 Jakub Piskorski

Rules -> Rule (Rule)*
Rule -> RuleName ":=" Pattern "->" (Actions)? "."
RuleName -> Identifier

Pattern -> "(" Concat ")" (":" Label)?
Label -> Identifier
Concat -> Disjunction (Disjunction)*
Disjunction -> Kleene ("|" Kleene )*
Kleene -> Element ("+" | "*" | "?")?
Element -> (BasicElement | Pattern)
BasicElement -> Type ("&" FeatStruct)?
Type -> Identifier
FeatStruct -> "[" Attribute ":" Value ("," Attribute ":" Value)* "]"
Attribute -> Identifier
Value -> (SimpleValue (Variable)?) | (Variable)
SimpleValue -> Identifier
Variable -> "#"Identifier

Actions -> Action ("," Action)*
Action -> Label ":" Type ("&" OutputStruct ("&" FuncOp)* )?
OutputStruct -> "[" Attribute ":" OVal ("," Attribute ":" OVal)* "]"
Attribute -> Identifier
OVal -> (SimpleValue | Variable)?
FuncOp -> (Variable ":=")? FuncOpName "(" Arg ("," Arg)* ")"
FuncOpName -> Identifier
Arg -> (SimpleValue | Variable)

Figure 6: ExPRESS Syntax

UN troops would not be matched since IsNonZeroQuantifier predicate (”None
of ”) does not hold.

The handling of Kleene constructions has to be clarified briefly. If a structure con-
taining a variable within a Kleene construction is matched more than once, then (op-
tionally) a local instances of the variable is created for each such submatch, and the
local bindings are accumulated into a concatenation thereof. This resembles the weak
unidirectional coreferences in XTDL (Drożdżyński, Krieger, Piskorski, Schäfer, and
Xu 2004). Further, labels are not allowed within Kleene constructions, and labeled
construction are not allowed to consume empty input streams.

The full syntax of EXPRESS extraction rule formalism is given in BNF format in
figure 6. Some constructs known from other pattern languages are missing, e.g., nega-
tion, but it can be simulated via non-productive rules and prioritization (Cunningham,
Maynard, and Tablan 2000).

4.3 Native and External Linguistic Components
In order to facilitate writing grammars EXPRESS comes with a pool of native basic
Unicode-aware IE-oriented linguistic processing resources, which includes: (a) a ba-
sic tokenizer which segments text based on a list of white spaces and token separators,
(b) a tokenizer which additionally performs fine-grained token classification (circa 40



9

IE-oriented default token classes are provided, e.g. email addresses, URLs, hyphen-
ated constructions, etc.), (c) simple morphological analyzer based on full-form lexica
encoded in the MULTEXT 4 format (Erjavec 2004), and (d) a space and time efficient
dictionary look-up tool which allows for storing huge amount of entries, where each of
them can be associated with arbitrary feature-value pairs. The latter two components
exploit the finite-state compression and compilation techniques described in (Daciuk
1998), (Piskorski 2005) and (Daciuk and Piskorski 2006).

Additional external processing components can be easily integrated via implement-
ing a special programming interface. Basically this boils down to providing a function
which converts components specific native output format into a stream of disjunctions
of FFSs with positional information, and providing functions which return a list of types
of output structures returned by this component and features which are appropriate for
these types. The latter ones are utilized for performing a strict compatibility check with
the types declared in the grammar cascade.

5 Compiling and Processing Grammars

Since the reservoir of FFSs used in extraction rules is potentially infinite, converting
EXPRESS grammars into a single and optimized for processing finite-state network
is not straightforward. Typically, in a grammar consisting of regular patterns over
some feature structures the latter ones are replaced by some unique symbols repre-
senting references to these feature structures, i.e., they are treated in a symbolic way
(naive implementation). Subsequently, single extraction patterns are merged into a sin-
gle MDFSA via application of standard finite-state optimization techniques. Although
such finite-state device is deterministic in a strict sense, it clearly is not determinis-
tic when we consider the real semantics of its transition labels, i.e., feature structures.
Consequently, while processing such automata (being the result of merging the elemen-
tary rule automata into one MDFSA), in each step, all outgoing transition from a given
state are inspected one by one whether their label matches with the current input feature
structures. Since distinct feature structures (even pairs of matching feature structures)
are represented as different symbols, some states of the automaton, might have a quite
high number of outgoing transitions. This applies in particular for the initial state and
in its direct proximity. Inspecting all outgoing transition each time the initial state is
visited clearly deteriorates the run-time performance.

The rest of this section describes a method for efficiently processing EXPRESS
grammars. First, in in subsection 5.1, the pattern matching algorithm sketched above is
described in a more formal manner. Next, in subsection 5.2, some enhancements thereof
are introduced, which mainly consist of flattening FFSs in the patterns and input FFSs
into character-level regular expressions and strings respectively, so that matching input
FFSs with the grammar automaton can be performed efficiently.

4MULTEXT was a EU-funded project aiming at developing a set of generally usable software tools to
manipulate and analyze text corpora, together with lexicons and multilingual corpora in several European
languages. In particular, harmonized specifications for encoding computational lexicons have been estab-
lished, i.e., same tagset and features are used for all languages.



10 Jakub Piskorski

5.1 Pattern Matching Algorithm
Let G be a grammar consisting of regular patterns r1 . . . rn over FFSs, where each
pattern ri is represented by a regular expression Ri. FFSs are replaced in each Ri

by symbols representing references to these FFSs. Next, we construct a DFSA M
(representing the whole grammar) which accepts the language R1·{$1}∪. . .∪Rn·{$n},
where $1 . . . $n are unique symbols representing rule identifiers. Additionally, we turn
each state q into a final state if it has an outgoing transition labeled with one of the
symbols in {$1, . . . , $n}. All other states are non-final. Further, let us assume, that the
stream of input FFSs is represented as a directed labeled graph InputFS = (V,E),
where all nodes in V correspond to start/end positions of text spans associated with the
input FFSs. An edge in E is a 3-tuple (v, a, u), where v and u are source/target nodes,
and a is the label which points to some FFS.

An algorithm that takes automaton M and finds all matches in InputFS (an in-
put stream of flat feature structures) is presented in figure 7. Please note that M is
is not deterministic when we consider the real semantics of its transition labels. The
variable node (initialized in line 1) points to the current node in InputFS, i.e., the
node from which the algorithm tries to find the next potential match. The main while
loop of the algorithm (lines 3-20) is executed until the current node is the last node in
InputFS. Since there is potentially more than one path from the node u in InputFS
which matches with the automaton M and due to the fact that even one single path in
InputFS might match with different paths in M , we store in the set Active all ‘cur-
rent’ configurations of M . A single configuration of M is a triple (q, π, v), where q
denotes the current state of M , π is a sequence of input FFSs which match a path in M
from q0 to q, and v denotes the next node in InputFS from which subsequent matches
in the input stream will be sought. Analogously, in Accepting we store all accept-
ing configurations of M (ones whose current state is final). Initially this set is empty
(line 5). In the while loop in lines 6-15 all possible configurations of M that match
some path in InputFS starting in the node node are computed. This process resem-
bles breadth-first-search in graphs. In particular, in the inner loop (lines 8-14) for each
(q, π, v) ∈ Active we compute all ‘subsequent’ configurations, i.e, the ones being the
result of matching some input FFS a starting in node v with a FFS a′ in the set of tran-
sitions for state q, so that δ(q, a′) 6= ⊥. Matching test is done via a call to the function
MATCHES (line 13). Note that for a single input FFS there might be potentially more
than one matching transition in M (for loop in lines 12-13). Once all ‘new’ configura-
tion have been computed, we select from the set of accepting configurations one which
fulfills selection criteria (line 17). Selection criteria may vary, depending on the search
strategy. For instance, in the longest-match strategy, one simply takes the configuration
which covers the longest text span. If more than one such configuration exists, then the
one being a result of application of a rule with highest priority is chosen, etc. 5 Once
an accepting configuration is chosen, an appropriate action is performed (line 18), e.g.,
output structure(s) is produced. We can restore the rules that matched via inspecting
transition labels from final states. Finally, the value of the current node in the input
graph is then modified accordingly in the line 19. If no accepting configurations were

5In some applications, it is convenient to select more than one accepting configuration, but the modifica-
tion to the presented algorithm is straightforward so it is not discussed any further.



5.1 Pattern Matching Algorithm 11

FIND-MATCHES(M = (Q, Σ, δ, q0, F ), InputFS)
1 node← GETFIRSTNODE(InputFS)
2 lastNode← GETLASTNODE(InputFS)
3 while node 6= lastNode
4 do Active← {(q0, ε, node)}
5 Accepting ← ∅
6 while Active 6= ∅
7 do Next← ∅
8 for (q, π, v) ∈ Active
9 do if q ∈ F

10 then Accepting ← Accepting ∪ {(q, π, v)}
11 for (v, a, u) ∈ InputFS
12 do for a′ ∈ Σ : δ(q, a′) 6= ⊥
13 do if MATCHES(a, a′)
14 then Next← Next ∪ {(δ(q, a′), π · a′, u)}
15 Active← Next
16 if Accepting 6= ∅
17 then (q, π, v)← SELECTACCEPTINGCONFIG(Accepting)
18 EXECUTEACTION(M, q, π)
19 node← v
20 else node← GETNEXTNODE(InputFS, node)
21 return

Figure 7: Pattern matching algorithm

found, the current node is set to the closest node in InputFS that has an outgoing edge
(line 20).

Intuitively, the most time-consuming part of the algorithm in figure 7 is the for loop
in lines 12-14. In the naive implementation one has to inspect all outgoing transitions
from the state q whether their label (a′) matches with the current input FFS (a). In-
specting all outgoing transition for frequently visited states, e.g., the initial state and its
direct proximity, clearly deteriorates the run-time performance.

For alleviating the aforementioned problem JAPE applies a solution which exploits
the fact that the feature structures being labels of outgoing transitions from a given state
have shared parts. In particular, all such structures are partitioned into disjoint partial
feature structures which do not intersect and they are reordered accordingly in order to
avoid redundant computations while matching the stream of input feature structures.

In XTDL, where the recognition part of the rules consists of TFSs, a similar tech-
nique for ordering the outgoing transitions is used. It consists of computing a transition
hierarchy under TFS subsumption for all outgoing transitions (labels) of a given state.
While traversing the grammar automaton, these transition hierarchies are utilized for
inspecting outgoing transitions from a given state, starting with the least specific tran-
sition(s) first, and moving downwards in the hierarchy, if necessary. Although this
technique proved to give a significant speed-up, the number of transitions which have
to be inspected for computing ‘subsequent’ automaton configurations might be on an
average relatively high due to the low degree of feature-value sharing.



12 Jakub Piskorski

5.2 Matching Flat Feature Structures
In order to efficiently perform the crucial matching step in the algorithm described in
the previous section (lines 12-14) we apply in EXPRESS a technique which consists
of flattening input FFSs into strings and converting all transitions labels of a given state
into a single DFSA, so that computing ‘new’ target states (new automata configurations)
is reduced to performing a simple deterministic automaton look-up.

Generally speaking, the process of finding a match at a given position in the input
stream is split into three steps: (1) selection of the sequence(s) of input FFSs which is
(are) covered by some rule(s) according to predefined selection strategy, (2) performing
a fully-fledged match of the selected rule(s) against the selected input sequence of FFSs,
which includes variable and label binding, and (3) producing and merging output struc-
tures. Postponing variable and label binding allows for efficiently implementing step
(1). Further, once an input sequence and the rules (or more) that match this sequence
have been selected, performing full matching in step (2) can be done quickly due to the
limited number of applicable rules. Thus, step (1) can be seen as a prefiltering of ap-
plicable rules. Since there are potentially several paths in the automaton for the rule(s)
selected in step (2), step (3) is necessary for merging and/or filtering out some output
structures, but we do not describe it here any further.

We now turn to implementing step (1) and sketch the technique for quick computing
matching transitions from a given state in a semi-formal way. Firstly, let us observe that
only a finite number of feature-value pairs are used in the grammar rules. We can
compute for all FFSs of a given type α, which appear in the rules, the respective value
sets Σ1, . . . Σk, where Σi is the value-set for the i-th feature appropriate for the type
α. 6 A given input FFS s = [f1 : v1 . . . fk : vk]α can be then encoded as a string
id(α) · $ · v∗1 · $ . . . $ · v∗k, where id maps types to unique symbols representing their
identifiers, $ is a unique symbol /∈ Σi ∪{>} (∀1 ≤ i ≤ k) which represents a separator
and v∗i ∈ Σi ∪ {>} are defined as follows:

v∗i =
{

vi : vi ∈ Σi

> : vi /∈ Σi ∨ vi = >

For instance, an input FFS [pos : noun, case : loc, gen : fem]morph with pos, case,
and gen being appropriate features for the type morph, where Σpos = {noun, adj},
Σgen = {masc, fem}, and Σcase = {nom, acc, dat, gen} (seen feature values),
would be represented as the following string: id(morph) · $ · noun · $ · > · $ · fem.

Analogously, each FFS s = [f1 : v1 . . . fk : vk]α being a label of a transition t from
a given state in the grammar automaton is represented as a regular expression of the
form id(α) ·$ v∗1 ·$ . . . $ · v∗k ·% · trans(t), where id and $ are defined as previously, %
is another unique separator, trans maps transitions to their unique symbolic identifiers,
and v∗i ∈ (Σi ∪ {>})∗ is a regular expression defined as follows:

v∗i =
{

vi : vi ∈ Σi

{>} ∪ Σi : vi = >

The second part of the definition of v∗i has to be a disjunction of {>} and Σi since we
intend to merge all regular expressions representing transitions from a given state into a

6Note that we order the features appropriate for a given type



5.2 Matching Flat Feature Structures 13

single DFSA (‘transition’ automaton for a given state), i.e., in case of encoding a feature
with unspecified value, all values (for that feature and type) seen in other patterns have
to be considered (Σi). Now, let T1, . . . , Tn be the regular expressions representing the
labels of the transitions t1, . . . , tn from a given state q in M resp., which were obtained
in the previously described manner. Let Mq be a DFSA which accepts the language
T1 ∪ . . . ∪ Tn. Then, we can compute the set of possible target states for the state q in
M and an input FFS a that is represented as a string w simply via computing a target
state p = δMq

(q, w) in Mq and inspecting all outgoing paths from p, whose labels start
with % in order to retrieve the target state identifiers in the grammar automaton M .
In this way, the steps 12-14 in the algorithm in figure 7 are reduced to a simple string
matching with the DFSA Mq.

We give an example to clarify the aforementioned technique. Let us assume that
t1 and t2 are two outgoing transitions from state q, which are labeled with [pos :
noun, case : >, gen : >]morph and [pos : >, case : acc, gen : >]morph and which
lead to state q1 and q2 resp. Turning them into corresponding regular expressions yields
id(morph) · $ · noun · $ · {nom, acc, gen, dat,>} · $ · {fem,masc,>} · %q1 for t1
and analogously id(morph) · $ · {noun, adj,>} · $ · acc · $ · {fem,masc,>} ·%q2 for
t2. The result of merging regular expressions representing the labels of t1 and t2 into
one DFSA Mq is shown in figure 8 in a simplified form ($ symbols were omitted).

0 1

2

3

6 9

4

5 8

7

10

11

morph

noun

adj, T

acc

fem, masc, T

fem, masc, T

fem, masc, T

%q
1

%q
1

%q
2

%q
2

acc

T, nom, dat, gen

Figure 8: Transitions labels merged into a single DFSA

Let us assume that an input FFS s = [pos : noun, case : acc, gen : masc]morph

has to be matched against the grammar automaton M in state q. Matching the string
representation of s, i.e., id(morph) · $ · noun · $ · acc · $ · masc, in the transition
automaton Mq results in state 8. Consequently, both states q1 and q2 are reachable via
matching FFS s in M from state q.

Techniques similar to the described in this section are also used in other finite-state
based frameworks, e.g., in (Skut, Ulrich, and Hammervold 2004). A further improve-
ment could be achieved by turning all input FFSs at a given position into a union of their
corresponding string representations and subsequently performing on-the-fly intersec-
tion thereof with the ‘transition’ automaton representing the outgoing transitions from



14 Jakub Piskorski

a given state. Whether this results in a speed-up is unclear since intersection operation
is more time-consuming than a single string acceptance check.

6 Technicalities

EXPRESS has been implemented fully in JAVA. The development is based on the
Java Compiler Compiler (JavaCC ) and the Java package dk.brics.automaton
containing time efficient implementations of finite-state automata and a bag of standard
operations for manipulating and optimizing them (Moller 2007). Currently, EXPRESS
consists of two stand-alone programs (parser and interpreter) and a documented JAVA
API for facilitating integration into other frameworks. Making EXPRESS publicly
available for research purposes is envisaged at a later stage.

We have carried out some experiments to measure the run-time behavior of EX-
PRESS with a two-stage grammar for recognition of information on actors, kidnapped,
dead and wounded in violent events. In the first stage standard named entities are recog-
nized, e.g., persons, group of persons, numerical expressions, etc. In the second stage,
single-slot and two-slot extraction rules are applied to retrieve the sought-after informa-
tion on related events, in which the entities recognized in the first stage participate. The
first-stage grammar consisting of circa 100 rules was developed by an expert, whereas
the second-level grammar was obtained via semi-automatic conversion of ca. 3000 au-
tomatically learned IE patterns (Piskorski, Tanev, and Oezden-Wennerberg 2007) into
EXPRESS rules. Further, five linguistic processing resources (e.g., tokenizer, gazeet-
teer and morphology look-up) were involved in the extraction process. Subsequently,
the aforementioned two-level grammar has been converted in almost one-to-one manner
into a XTDL grammar. It turned to be a relatively simple task since the core linguistic
components provided with EXPRESS have nearly identical functionality and I/O spec-
ification as those used in SPROUT. However, some rules had to be expressed as two
rules in XTDL since XTDL rules do not allow for specifying more than one output
structure directly.

In an experiment, the grammars were applied to a 167 MB excerpt of the news
on terrorism, consisting of 122 files on a PC Pentium 4 machine with 2,79 GHz. The
table 1 gives figures of the average run-time (in seconds) for processing a single file
(average size of 1,37 MB) at different stages. The average number of matches per doc-
ument amounted to ca. 60 000. Clearly, EXPRESS performs significantly better than

Time \ Grammar Interpreter XTDL EXPRESS
core linguistic components stage I 2.451 1.818
entity-pattern matching 38.212 1.923
entity-structure production 4.172 0.515
core linguistic components stage II 1.092 0.639
event-pattern matching 12.124 0.666
event-structure production 0.156 0.013
Total 58.207 5.574

Table 1: Run-time behavior: XTDL vs. EXPRESS



15

XTDL interpreter. The pattern matching itself constituted 46, 34% (EXPRESS) and
86, 48% (XTDL) of the total processing time respectively. In a second experiment, we
have slightly ‘compressed’ the XTDL grammar through using coreferencing and other
XTDL specific features, which resulted in deterioration of the run-time performance
by the factor of two.

Finally, in the last experiment, we applied the same cascade of grammars to a col-
lection of sentences (8 MB), where for each sentence in this collection there is at least
one second-stage extraction rule that matches. EXPRESS run-time amounted to 36,7
seconds, whereas SPROUT needed for processing the same collection ca 575 seconds.

Although converting EXPRESS grammars into JAPE format is a more laborious
task, the above run-time figures for EXPRESS are better than one could potentially
obtain when using JAPE according to authors ‘subjective’ experience with the latter
one and some basic experiments of converting the first-level grammar into JAPE.

7 Summary
In this paper, we presented EXPRESS, a new IE-oriented pattern specification and
recognition engine, which borrows heavily from two previously introduced pattern
languages, namely JAPE and XTDL. In particular, EXPRESS grammars consist of
extraction rules which are regular expressions over flat feature structures with string-
valued features. EXPRESS was developed primarily in order to find a trade-off be-
tween ‘compact descriptions’ and efficient processing of huge text collections. It is al-
ready operational and in a task focusing on extracting violent events from online news,
EXPRESS is capable of applying modest-size grammars on MB-sized texts within sec-
onds. Clearly, XTDL or some other IE-oriented pattern languages are more expressive
and more powerful, but there is a wide range of extraction tasks for which EXPRESS
will come in handy and might constitute a time-efficient alternative.

In future work, the pattern formalism will be extended by adding some new con-
structs and providing new native processing resources. Going beyond ‘sequential’ pro-
cessing of grammars is planed. In general, EXPRESS will be kept as minimal as pos-
sible and any future developments will be strictly driven by the specific application
needs. In particular, it will be deployed for named-entity and relation extraction. Fi-
nally, exploring additional speed-up techniques for processing grammars is envisaged,
e.g., (a) intelligent reordering of feature-value pairs in the FFS in such a way that fea-
tures which are most likely to eliminate a high number of potential target states precede
other feature-value pairs, and (b) conversion of input FFSs starting at a given position
into a union of their corresponding string representations and subsequently performing
on-the-fly intersection thereof with the ‘transition’ automaton representing the outgoing
transitions from a given state.

References
Appelt, D. and B. Onyshkevych (1998). The Common Pattern Specification Lan-

guage. In Proceedings of Tipster Text Program - Phase III, pp. 23–30.



16 Jakub Piskorski

Best, C., E. van der Goot, K. Blackler, T. Garcia, and D. Horby (2005). Europe
Media Monitor. Technical Report EUR 22173 EN, European Commission.

Copestake, A. (2000). Appendix: definitions of typed feature structures. Natural
Language Engineering 6(1), 109–112.

Cunningham, H., D. Maynard, and V. Tablan (2000). JAPE: a Java Annotation
Patterns Engine (Second Edition). Technical Report, CS–00–10, University of
Sheffield, Department of Computer Science.

Daciuk, J. (1998). Incremental Construction of Finite-State Automata and Transduc-
ers. PhD Thesis. Technical University Gdańsk.

Daciuk, J. and J. Piskorski (2006). Gazetteer Compression Technique Based on Sub-
structure Recognition. In Proceedings of Intelligent Information Systems 2006
- New Trends in Intelligent Information Processing and Web Mining. Springer
Verlag series ”Advances in Soft Computing”.

Drożdżyński, W., H.-U. Krieger, J. Piskorski, U. Schäfer, and F. Xu (2004). A Bag of
Useful Techniques for Unification-Based Finite-State Transducers. In Proceed-
ings of of 7th KONVENS Conference, Vienna, Austria.

Drożdżyński, W., H.-U. Krieger, J. Piskorski, U. Schäfer, and F. Xu (2004). Shallow
Processing with Unification and Typed Feature Structures — Foundations and
Applications. Künstliche Intelligenz 2004(1), 17–23.

Erjavec, T. (2004). MULTEXT - East Morphosyntactic Specifications.

Japec (2006). Japec – A Jape-to-Java Optimizing Compiler. Web document,
http://www.ontotext.com/gate/JapecPres.pdf.

JavaCC. https://javacc.dev.java.net.

Moller, A. (2007). http://www.brics.dk/automaton.

Muslea, I. (1999). Extraction Patterns for Information Extraction Tasks: A Survey.
In Proceedings of AAAI 1999.

Neumann, G., R. Backofen, J. Baur, M. Becker, and C. Braun (1997). An information
extraction core system for real world German text processing. In Proceedings of
the 5th International Conference of Applied Natural Language, pp. 208–215.

Piskorski, J. (2005). On Compact Storage Models for Gazetteers. In Proceedings of
the 5th International Workshop on Finite-State Methods and Natural Language
Processing, Helisnki, Finland. Springer, LNAI.

Piskorski, J., H. Tanev, and P. Oezden-Wennerberg (2007). Extracting Violent Events
from On-line News for Ontology Population. In 10th International Conference
on Business Information Systems. Poznan, Poland. Lecture Notes in Computer
Science, LNCS 4439, pp. 287–300.

Skut, W., S. Ulrich, and K. Hammervold (2004). A Flexible Rule Compiler for
Speech Synthesis. In Proceedings of the International IIS:IIP WM’2004 Confer-
ence. Zakopane, Poland. Springer, Advances in Soft Computing, pp. 257–266.

van Noord, G. and D. Gerdemann (2001). Finite State Transducers with Predicates
and Identity. Grammars 4(3), 263–286.


