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Abstract

We present sppc, a high-performance system for intelligent text extraction and

navigation from German free text documents. sppc consists of a set of domain-

independent shallow core components which are realized by means of cascaded weighted

finite state machines and generic dynamic tries. All extracted information is repre-

sented uniformly in one data structure (called the text chart) in a highly compact and

linked form in order to support indexing and navigation through the set of solutions.

German text processing includes (among others) compound processing, high per-

formance named entity recognition and chunk parsing based on a divide-and-conquer

strategy. sppc has a good performance (4380 words per second on standard PC envi-

ronments) and high linguistic coverage.

1 Introduction

The information society will gradually provide its members with nearly unlimited access

to all sorts of information. Without highly effective sophisticated information extraction

applications for dealing with this wealth of information, the human user will not be able

to utilise more than a tiny fraction of the immense potential the new technology offers.

The bulk of information which companies, administrations and private citizens have to

deal with is in written language. Therefore one important application area for language

technology is classification, indexing and retrieval in very large collections of short texts

(e.g., news stories from press agencies, e-mail messages, abstracts) and large collections of

long texts (e.g., on-line manuals, on-line business and financial reports, on-line journal arti-

cles). Here, advanced language technologies can be used to extract fine-grained information

for supporting more accurate indexing and retrieval. Furthermore, the growing amount of
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on-line text and the growing population of users who want to extract an ever-widening di-

versity of types of information, requires easy portability of information extraction systems

to new applications which can be done by trained non-specialists on the basis of a fast

development cycle. Hence, ease of re-usability and customatization of IE core technology

are critical for rapidly porting systems to new domains [Grishman and Sundheim, 1996;

Cowie and Lehnert, 1996], as well as for an easy and intuitive navigation through the

space of extracted information.

From our perspective, natural language analysis is a “step-wise process of normaliza-

tion”. For example in the case of morphological processing the determination of lexical

stems (e.g., “Haus” (house)) can be seen as a normalization of the corresponding word

forms (e.g., “Häusern” (houses-PL-DAT) and “Hauses” (house-SG-GEN). In the same

way, named entity expressions or other special phrases (word groups) can be normalized

to some canonical forms and treated has paraphrases of the underlying concept. For ex-

ample, the two date expressions “18.12.98” and “Freitag, der achtzehnte Dezember 1998”

could be normalized to the following structure:

〈type = date, year = 1998,month = 12, day = 18, weekday = 5〉.

In case of generic phrases or clause expressions a dependence-based structure can be used

for normalization. For example the nominal phrase “für die Deutsche Wirtschaft” (to the

German economy) can be represented as

〈head = f ür, comp = 〈head = wirtschaft, quant = def,mod = deutsch〉〉.

One of the main advantage of following a dependency approach to syntactic representation

is its use of syntactic relations to associate surface lexical items. Actually this property

has lead to a recent renaissance of dependency approaches especially for its use in shallow

text analysis (e.g., [Grinberg et al., 1995; Oflazer, 1999]).1

In this paper we will describe sppc an advanced system for intelligent text extraction

and navigation. sppc consists of a set of advanced domain-independent shallow text

processing tools which supports very flexible preprocessing of text wrt. the degree of

depth of linguistic analysis. The major tasks of the core shallow text processing tools are

• extract as much linguistic structure from text as possible,

1From our current point of view, domain-specific IE templates also can be seen as normalizations

because they only represent the relevant text fragments (or their normalizations) used to fill corresponding

slots by skipping all other text expressions. Thus seen, two different text documents which yield the same

template instance can be seen as paraphrases because they “mean” the same.
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• represent all extracted information (together with its frequency) in one data struc-

ture as compactly as possible in order to support navigation through the set of

solutions.

In order to achieve this in the desired efficient and robust way, sppc makes use of

advanced finite state technology on all levels of processing and a data structure called text

chart.

2 Core technology

Finite-state devices recently have been used extensively in many areas of language tech-

nology [Mohri, 1997], especially in shallow processing, which is motivated by both com-

putational and linguistic arguments. Computationally, finite-state devices are time and

space efficient due to their closure properties and the existence of efficient determinization,

minimization and other optimization and transformation algorithms. From the linguistic

point of view most of the relevant local phenomena in the empirical study of language

can be easily expressed as finite-state devices. Obviously, there exists much more power-

ful formalisms like context-free or unification based grammars, but since industry prefers

more pragmatic solutions finite-state technology is recently in the centre of attention.

Hence core finite-state software was developed, consisting of the DFKI FSM Toolkit for

constructing and manipulating finite-state devices [Piskorski, 1999] and generic dynamic

tries, which we describe briefly in the section.

2.1 DFKI FSM Toolkit

The DFKI FSM Toolkit is a library of tools for building, combining and optimizing

finite-state machines (FSM), which are generalizations of weighted finite-state automata

(WFSA) and transducers (WFST) [Mohri, 1997]. Finite-state transducers are automata

for which each transition has an output label in addition to the more familiar input la-

bel. For instance, the finite-state transducer in figure 1 represents a contextual rule for

part-of-speech desambiguation: change tag of wordform from noun or verb to noun if

the previous word is a determiner. Weighted automata or transducers are automata or

transducers in which each transition has a weight as well as input/output labels. There

already exist a variety of well known finite-state packages, e.g., FSA6 [van Noord, 1998],

Finite-State Tool from Xerox Parc [Kartunen et al., 1996] or AT&T FSM Tools [Mohri et
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Figure 1: A simple FST

al., 1996]. However only few of them provide algorithms for WFSA’s and even less sup-

port operations for WFST’s. Algorithms on WFSA’s have strong similarities with their

better known unweighted counterparts, but the proper treatment of weights introduces

some additional computations. On the other hand algorithms on transducers are in many

cases much more complicated than coresponding algorithms for automata. Besides that

the closure properties of transducers are much weaker than those of automata.

The DFKI FSM Toolkit is divided in two levels: an user-program level consisting of

a stand-alone application for manipulating FSM’s by reading and writing to files and a

C++-library level consisting of an archive of C++ classes, methods and functions, which

implement the user-program level operations. The latter allows an easy embedding of

single elements of the toolkit into any other aplication. Finite-state machines in the

DFKI FSM Toolkit can be represented either in compressed binary form, optimized for

processing or textual format. A semiring on real numbers, consisting of an associative

extension operator, an associative and commutative summary operator and neutral ele-

ments of these operators [Cormen et al., 1992], may be chosen in order to determinize

the semantics of the weights of an FSM. The associative extension operator is used for

computing the weight of a path (combining the weights of arcs on the path), whereas the

summary operator is used to summarize path weights. Most of the operations work with

arbitrary semirings on real numbers (only a computational representation of the semiring

is needed). The operations are divided into three main pools:

1. converting operations: converting textual representation into binary format and vice

versa, creating graph representations for FSMs, etc.

2. rational and combination operations: union, closure, reversion, inversion, concate-

nation, local extension, intersection and composition

3. equivalence transformations: determinization, bunch of minimization algorithms,

epsilon elimination, removal of inaccessible states and transitions
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Most of the provided operations are based on recent approaches proposed in [Mohri,

1997], [Mohri et al., 1996], [Roche and Schabes, 1995] and [Roche and Schabes, 1996].

Some of the operations may only be applied to a restricted class of FSM’s due to the limited

closure properties of finite-state transducers, for instance only epsilon-free transducers are

closed under intersection. Furthermore only a small class of transducers is determinizable

[Mohri, 1997], but it turned out that even in languages with free word order like German

local phenomena can be captured by means of using determinizable transducers.

The architecture and functionality of DFKI FSM Toolkit is mainly based on the tools

developed by AT&T. As well as AT&T we allow only use of letter transducers (only

a simple input/output symbol as a label of a transition is allowed) since most of the

algorithms require such type of transducers as input and thus time consuming conversion

steps may be omitted. Unlike AT&T we do not provide operations for computing shortest

paths, but instead provide some operations not included in the AT&T package, which

are of great importance in shallow text processing. The algorithm for local extension,

which is crucial for an efficient implementation of Brill’s tagger, proposed in [Roche and

Schabes, 1995] was adapted for the case of weighted finite-state transducers and a very fast

operation for direct incremental construction of minimal deterministic acyclic finite-state

automata [Daciuk et al., 1998] is provided. Besides that, we modified the general algorithm

for removing epsilon-moves in [Piskorski, 1999], which is based on the computation of

the transitive closure of a graph representing epsilon moves. Instead of computing the

transitive closure of the entire graph (complexity O(n3)) we first try to remove as many

epsilon transitions as possible and then compute the transitive closure of each connected

component in the graph representing the remaining epsilon transitions. This proved to be

a considerable improvement in practice.

2.2 Generic Dynamic Tries

The second crucial core tool is the generic dynamic trie, a parametrized tree-based data

structure for efficiently storing sequences of elements of any type, where each such sequence

is associated with an object of some other type. Unlike classical tries for storing sequences

of letters [Cormen et al., 1992] in lexical and morphological processing (stems, prefixes,

inflectional endings, full forms etc.) generic dynamic tries are capable of storing far more

complex structures, like for example sequences containing components of a phrase, where

such components contain lexical information. The trie in figure 2 is used for storing verb
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phrases and their frequencies, where each component of the phrase is represented as pair

containing the string and part-of-speech information. In addition to the standard functions

for inserting and searching, an efficient deletion function is provided, which is indispensable

in self organizing lexica, like for instance lexica for storing most frequent words, which

are updated periodically (as done in our system). Furthermore, a variety of other more

complex functions relevant for linguistic processing are available, including robust recursive

trie traversal and functions supporting recognition of longest and shortest prefix/suffix of

a given sequence in the trie. The latter ones are a crucial part of the algorithms for the

decomposition of German compounds and hyphen coordination in German (see sec. 3.1).

 

 

STRING:Er
POS:PRON

 

STRING:gibt
POS:V

FREQ:1

STRING:spielt
POS:V

 

STRING:ihr
POS:POSSPRON

 

STRING:ihr
POS:DET

FREQ:1

STRING:Brot
POS:N

FREQ:4

STRING:Brot
POS:N

Figure 2: Example of a generic dynamic trie. The following pathes are encoded: (1) “Er(PRON) gibt(V)

ihr(DET) Brot(N).” (He gives her bread.), (2) “Er(PRON) gibt(V) ihr(POSSPRON) Brot(N).”, and “(3)

Er(PRON) spielt(V).” (He plays.)

3 System overview

3.1 Architecture

In this section we will introduce the architecture of sppc shown in figure 3. It consists of

two major components, a) the Linguistic Knowledge Pool lkp and b) stp, the shallow text

processor itself. STP processes a NL-text through a chain of modules. We distinguish two

primarily levels of processing, the word level and the phrase level. Both are subdivided into

several components. First, the text tokenizer maps sequences of characters into greater

units, usually called tokens. Each token, which is identified as a potential wordform is then

lexically processed by the lexical processor. Lexical processing includes retrieval of
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Figure 3: The blueprint of the system architecture. Figure 5 shows more details of the

text chart.
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lexical information (on the basis of a word form lexicon), on-line recognition of compounds

and hyphen coordination. Afterwards the control is passed to pos filter, which performs

word-based disambiguation, which is the final step of processing on the word level. The

overall task of the phrase-level modules is to construct a hierarchical structure over the

words of a sentence. In contrast to deep parsing strategies, where phrases and clauses

are interleaved, we separate these steps. The phrase level processing in stp is divided

into three modules. First the named entity finder identifies specialized expressions for

time, date and several name expressions. Secondly phrase recognizer identifies general

nominal phrases, prepositional phrases and verb groups. The structure of potential phrasal

fragments is defined using finite-state devices. In the final third step, clause recognizer

analyzes the dependency-based structure of the fragments of each sentence using a set of

specific patterns, similarly expressed by means of finite-state devices.

Text Tokenizer Each text is preprocessed by the text tokenizer, which performs

two tasks. Firstly a text scanner maps sequences of consecutive characters into word-

like units, usually called tokens. In a second step a token classifier identifies the type

of each token (e.g., two digit number, decimal number, lower case word, word begining

with capital). The token classifier is based on one WFSA, which is build up by applying

union operation on WFSA’s representing each token type. Hence the token classifier can

be easily updated or extended by introducing new token classes without affecting the

overall performance of the tokenizer. The output of the text tokenizer is a list of so

called token items represented as triples of the form 〈start, end, type〉, where start and

end are pointers to the beginning and end of the token and type represents the type of

the token. Unlike conventional tokenizers we do not recognize dates, time expressions etc.

at this stage. We rather use generic (based on the syntax) token classes in such case.

The string “13:15” is classified as number-dot compositum since it does not necessarly has

to be a time expression (could be also a result of a volleyball game). Similarly “1.3.96”

would be classified as number-dot compositum. Since the text tokenizer handles only

single words disregarding the context, the recognition of date and time expressions is

postponed and done at a higher stage by the named entity finder. However there exist

some strings, which have an unambiguous reading and in such cases we use specific token

classes (e.g., e-mail and URL adresses). Complex token classes include: abbreviation (on

the basis of a set of known german abbreviations, ca. 600), candidate for abbreviation,

complex compositum (e.g., “AT&T- Chief”) and a variety of classes for representing words
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containing dashes (the word “d‘Italia-Chefs-” is classified as complex compositum word

begining with lower case letter and ending with a dash) are provided, where the latter

ones are relevant for hyphen coordination. Overall there are currently 51 token classes

and it turned out that such variety simplifies processing on higher stages.

Lexical Processor Each token, which is identified as a potential wordform is lexically

processed by the lexical processor. Lexical processing includes retrieval of lexical

information and recognition of compounds and hyphen coordination. The sole storage

device for full form lexicon used in sppc is a generic dynamic trie. Hence the retrieval

of lexical information is reduced to simple trie traversal. Currently over 700.000 German

full-form words are available. Each word form is represented as a list of triples (each triple

represents one reading) of the form 〈stem, infl, pos〉, where stem is a string representing

the stem of the word form, infl is the inflectional information and pos is the part of

speech. The inflectional information is expressed in disjunctive normal form. There are

11 inflectional features, among others including: tense, form, person, gender, number

and case. In case a wordform misses one of the features (e.g., a noun form has no tense

feature) the missing feature is returned with the special value NO. Here follows the result

of lexical processor for the word “wagen” (two readings: to dare and a car):

stem wag

pos v

infl (tense: pres, person: anrede, number: sg) (tense: pres, person: 1, number: pl)

(tense: pres, person: 3, number: pl) (tense: pres, person: anrede, number: pl)

(tense: subjunct-1, person: anrede, number: sg) (tense: subjunct-1, person: 1, number: pl)

(tense: subjunct-1, person: 3, number: pl) (tense: subjunct-1, person: anrede, number: pl)

(form: infin) (form: imp, person: anrede)

stem wagen

pos n

infl (gender: m, case: nom, number: sg) (gender: m, case: dat, number: sg)

(gender: m, case: akk, number: sg) (gender: m, case: nom, number: pl)

(gender: m, case: gen, number: pl) (gender: m, case: dat, number: pl)

(gender: m, case: akk, number: pl)

The output of the LEXICAL PROCESSOR returns a list of so called lexical items

represented as tuples of the form 〈start, end, lex, compound, pref〉, where:

• start and end point to first and last token of the lexical item, usually tokens are

directly mapped to lexical items, but due to the handling of separations some tokens

may be combined together, e.g., “Ver-” and “kauf” will be combined to “Verkauf”
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(sale) in forms like “Ver- und Ankauf” (sale and purchase),

• lex contains the lexical information of the word (actually lex only points to an ade-

quate lexical information in the lexicon, no duplicate copies are created),

• compound is boolean attribute, which is set to true in case word is a compound,

• pref is the prefered reading of the word, which is computed later by pos filter for

ambiguous words

Compund analysis Each token not recognized as a valid wordform is a potential com-

pound candidate. The compound analysis is realized by means of a recursive trie traver-

sal. The special trie functions we mentioned earlier for recognition of longest and shortest

prefix/suffix are used in order to break up the compound into smaller parts, so called

compound-morphems. Often more than one lexical decomposition is possible. In order to

reject invalid decompositions a set of rules for validating compound-morphems is used (this

is done separately for prefixes, suffixes and infixes). Additionaly a list of valid compound

prefixes is used since there are compounds in German beginning with a prefix, which is

not necesarly a valid wordform (e.g., “Multiagenten” (multi-agents) is decomposed into

“Multi” + “Agenten”, where “Multi” is not a valid wordform). The capability of efficiently

processing compounds is crucial since compounding is a very productive process of the

German language. Another important issue is hyphen coordination. It is mainly based on

the compound analysis, but in some cases the last conjunct (coordinate element) is not

necessarly a compound, e.g.,

(a) “Leder-, Glas-, Holz- und Kunststoffbranche” leather, glass, wooden, plastic, and

synthetic materials industry

The word “Kunststoffbranche” is a compound consisting of two morphems: “Kun-

stoff” and “branche”. Hence “Leder-”, “Glas-” and “Holz-” can be easily resolved

to “Lederbranche”, “Glasbranche” and “Holzbranche”

(b) “An- und Verkauf” purchase and sale

The word “Verkauf: is a valid wordform, but not a compound. An internal decom-

position of this word must be undertaken in order to find suitable suffix for proper

coordination of “An-”
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POS Filter If we consider the lexical analysis of words in isolation (which is the usual

case), then each word is potentially ambiguous. In order to decrease the set of possible

candidates for the following modules local and very efficient desambiguation strategies are

applied in order to filter out unplausible readings. This is done by applying POS-taggers

as well as by applying case-sensitive rules. Generally, only nouns (and proper names) are

written in standard German with an capitalized initial letter (e.g., “der Wagen” - the car

vs. “wir wagen” - we venture). Since typing errors are relatively rare in press releases (or

similar documents) the application of case-sensitive rules is a reliable and straightforward

tagging means for German. The task of a pos-filter is to compute the prefered reading

(part-of-speach) of a current word in its current context using case-sensitive and contextual

rules based on part-of-speach information (e.g., change tag of wordform from noun or verb

to noun if the previous word is determiner). The latter group of rules is a combination

of manually constructed rules and rules determined by Brill’s tagger [Brill, 1993]. It has

been shown that this set of filter rules can be represented as a single finite-state transducer

[Roche and Schabes, 1995]. We will briefly describe the construction procedure. First,

the application of each rule is encoded as nondeterministic finite-state transducer (see

figure 1). The next step consists of turning the transducers produced in the preceding

step into transducers that operate globally on the input in one pass by applying the

local extension operation. In the third step all transducers are combined into one single

transducer (composition of transducers) and finally this transducer is transformed into an

equivalent minimal deterministic transducer.

Named Entity Finder The task of the named entity finder is the identification of

entities (organizations, persons, locations), temporal expressions (time, date) and quanti-

ties (monetary values, percentages, numbers). Usually, text processing systems recognize

named entities primarly using local pattern-matching techniques. In our systems we first

identify a phrase containing potential candidates for a named entity by using recognition

patterns expressed as WFSA’s, where the longest match strategy is used. Similarly to

tokenizer extending the set of such patterns does not affect the overall performance of

the recognition-part since all WFSA’s are merged to a single WFSA. Secondly, additional

constraints (depending on the type of the candidate) are used for validating the candi-

dates and an appropriate extraction rule is applied in order to recover the named entity.

The output of this component is a list of so called named-entity items, represented as

four-tuples of the form 〈start, end, type, subtype〉, where start and end point to the first
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STRING: Co.

STRING: Co

Figure 4: The automaton representing the pattern (here a simplified version) for recogni-

tion of company names

and last lexical item in the recognized phrase, type is the type and subtype the subtype

of the recognized named entity. For instance, the expression “von knapp neun Milliar-

den auf über 43 Milliarden Spanische Pesetas” (from almost nine billions to more than

43 billion spanish pesetas) will be identified as named entity of type currency and sub-

type currency-prepositional-phrase. Since the named-entity finder operates on

a stream of lexical items, the arcs of the WFSA’s representing the recognition patterns

can be viewed as predicates for lexical items. There are three types of predicates:

1. string: s, holds if the surface string mapped by current lexical item is of the form s

2. stem: s, holds if: (1) current lexical item has a prefered reading with stem s or (2)

current lexical item does not have prefered reading, but at least one reading with

stem s exist

3. token: x, holds if the token type of the surface string mapped by current lexical item

is x.

In figure 4 we show the automaton representing the pattern for the recognition of

company names. This automaton recognizes any sequence of words beginning with an

upper-case letter, which are followed by a company designator (e.g., Holding, Ltd, Inc.,

GmbH, GmbH & Co.). A convenient constraint for this automaton should disallow the

first word in the recognized fragment to be a determiner (usually it does not belong to

the name) and in case the recognized fragment consists solely of a determiner followed

directly by company designator, the candidate should be rejected. Hence the automaton

would recognize “Die Braun GmbH & Co.”, but only “Braun GmbH & Co.” would be

extracted as named entity, whereas the phrase “Die GmbH & Co.” would be rejected.

For retrieving named-entities we use an additional lexicon for geographical names, first

names (persons) and company names, which is compiled as WFSA. Each string mapped
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by lexical item beginning with an upper-case letter is searched in this lexicon and in case

it is found it’s token type will be temporarily changed to special token class (e.g., city,

first name, company name). For instance the word “Berlin” is classified by the tokenizer

as first-capital word, but since it would be found in the special named-entity lexicon

mentioned above it’s token class would be set to city.

Many of the named entities can be recognized because of the specific context they

appear in. For instance company names often include so called company designators as

we already seen above (e.g., GmbH, Inc., Ltd etc.). However such company names may

appear later in the text without such designators and they would probably refer to the

same object. Hence we use a dynamic lexicon for storing named-entities, which may

appear later in the text without designators (organisations, persons). For example after

recognizing the company name “Apolinaris & Schweepes GmbH & Co.” we would save

the phrase “Apolinaris & Schweepes” in this dynamic lexicon. The succeeding occurences

of the latter phrase without a designator would be then treated as a occurence of named-

entity and a reference to the last occurence the same phrase with the designator would

be set (heuristic). Unfortunately one problem arises, the named-entities stored in the

dynamic lexicon, consisting only of one word may be also a valid word form. At this

stage it is usually impossible to decide for such words wether they are named-entities or

not. Hence such words are recognized as candidates for named-entities (there are three

special candidate types: organization candidate, person candidate and location candidate).

For instance, after recognizing the named-entity “Braun AG”, the following occurence of

“Braun” would be recognized as organization candidate since “braun” is valid word form

(brown). Such ambiguities can be resolved on higher level of processing or by applying

some heuristics.

Phrase Recognizer The phrase recognizer is responsible for the extraction of nom-

inal and prepositional phrases and verb groups. This is done in a very similar way to recog-

nizing named entities. The fragment extraction patterns are expressed as WFSA’s (mainly

based on the part-of-speech and type of the named-entity information) and appropriate

constraints (e.g., for checking agreement or morphological features of the verbs) are used

for validation of candidate phrases. The phrase recognizer takes as input both the list

of lexical items and the list of named-entities computed on preceding levels. The output

of this module is a list of phrase items represented as 2-tuple of the form 〈type, comps〉,

where type is the type of the phrase and comps is a list of the components of the phrase.
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The information gathered on all stages of processing (including phrase recognizer) for the

sequence “an die Frankfurter Boerse” (for the Frankfurt Stock Exchange Market) is shown

in figure 5 (in a simplified form).

The phrasal grammars only consider continous substrings and try to recognize the

longest matching substring. Since we do not recognize discontinous phrases at that level,

recognition of verb groups is only partial as long as a verb group is splitted into a left

and right part, as is common in German. For example in passive sentences the auxillar

and the corresponding main verb are splitted into two parts such that other phrases are

spliced into the splitting point:

“Gestern [ist] der Linguist vom neuen Manager [entlassen worden].”

Yesterday, the linguist [has] [beeb fired] by the new manager.

Note that it is possible to configure the phrase grammars in different ways, e.g., to run

verb groups independently from the other phrases, so that the phrase recognizer can be

called as subroutine on different places during chunk parsing. Actually we make use of

this sort of flexibility in the clause recognizer.

Clause Recognizer The main task of clause recognizer is to construct a depen-

dency relation between all recognized phrases. Basically this includes combination of

coresponding left and right verb groups, identification of subclauses, and collection of all

phrases which are dominated by the found verb groups. Rules for clause recognition are

expressed as WFST’s. In most well-known shallow text processing systems (cf. [Sund-

heim, 1995] and [Extraction, 1998]) cascaded chunk parsers are used which perform clause

recognition after phrase recognition following a bottom-up style as described in [Abney,

1996]. In the smes – the predeccesor system of sppc[Neumann et al., 1997] – we also used

a similar bottom-up strategy for processing of German texts. However, the main prob-

lem we experienced using the bottom-up strategy was insufficient robustness: because

the parser depends on the lower phrasal recognisers, its performance is heavily influenced

by their respective performance. As a consequence the parser frequently wasn’t able to

process structurally simple sentences, because they contained for example highly complex

nominal phrases. Consider for example the following case:

“[Die vom Bundesgerichtshof und den Wettbewerbshütern als Verstoß gegen das Kartel-

lverbot gegeisselte zentrale TV-Vermarktung] ist gängige Praxis.”
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Figure 5: Example of the text chart for the expression “an die Frankfurter Börse” (for the

Frankfurt Stock Exchange Market)
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Central television marketing censured by the German Federal High Court and the

guards against unfair competition as an act of contempt the central ban is common praxis.

has a quite complex NP (marked by [ ]). During free text processing it might be not

possible (or even desirable) to recognize such a phrase completely. However, this can lead

to interpolations wrt. recognition of the clause structure. Furthermore in a sole bottom-up

approach some ambiguities – for example relative pronouns – can’t be resolved without

introducing much underspecification into the intermediate structures.

Therefore we developed an top-down/bottom-up chunk recognizer: In a first phase only

the verb groups and the topological structure of a sentence according to the linguistic

field theory (cf. [Engel, 1988]) are determined. In a second phase the phrasal grammars

(nominal and prepositional phrases, proper names) are applied to the contents of the

different fields of the main and subordinate clauses. The following example shows the

result of the first step:

“[coord [core Diese Angaben konnte der Bundesgrenzschutz aber nicht bestätigen], [core

Kinkel sprach von Horrorzahlen, [relcl denen er keinen Glauben schenke]].”

This information couldn’t be verified by the Border Police, Kinkel spoke of horrible

figures that he didn’t believe.

This approach offers two main advantages:

• improved robustness, because parsing of the sentence structure is based only on some

reliable indicators like verbgroups and conjunctions and their interplay

• the resolution of some ambiguities, including relative pronouns vs. determiner, sub-

junction vs. preposition and sentence coordination vs. NP coordination.

First experiments showed very promising results using a blind test of 400 sentences

containing 6300 word forms from press releases selected messages of different kind (po-

litical, economy and others) from DPA and Reuters from 2. and 5. July 1999. Here we

obtained an f-mesaure of 87.14%.

3.2 Information access

It is important that the system can store each partial result on each level of processing

in order to make sure that as much as contextual information as possible is available on

each level of processing. We will call the knowledge pool that maintains all partial results

computed by the shallow text processor system a text chart. Each component outputs
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the resulting structures uniformly as feature value structures, together with its type and

the corresponding start and end positions of the spanned input expressions. We call these

output structures text items (see figure 5).

The different kind of index information computed by the individual components (e.g.,

text position, reduced word form, category, phrase) allow an uniform flexible and efficient

access to each individual partial result. This will avoid unnecessary re-computations and

on the other hand, it provides rich contextual information in case of disambiguation or the

handling of unknown constructions. Furthermore, it provides the basis for the automatic

computation of hyperlinks of text fragments and their corresponding internal linguistic

information. This highly-linked data structures provide for the internal representation for

navigating through the space of all extracted information of each processing level. For

example figure 6 shows a screen dump of the current GUI of sppc.

The shallow text processor thus described can “only” compute linguistic information

in the sense that it does not tell us what information is relevant for our domain modelling.

However, we assume that the quantity and distribution of each information unit on every

level of processing will tell us something about its relevance.

3.2.1 “Pure” Statistics

The computed structures on each level can uniformily be treated as a stream of units. For

example, the text tokenizer computes a stream of tokens, the lexicon component a stream

of morphological readings, and the phrasal recognizer returns a stream of phrases. Each

unit is represented as a text item which encodes its start and end position in the input

text, its type (e.g., token class, part-of-speech or phrasal type), and a representation of its

output structure (see also previous section).

Now, by “pure” statistical information we mean the collection of frequency and distri-

bution information of extracted text fragments without considering its internal structure,

i.e., we only consider the text fragment’s string, its text position and its type (e.g., noun

(N), adjective (Adj), proper name (PN), nominal phrase (NP) or verb group (VG) etc.).

Using this information we can easily compute the relative frequency of certain instances of

each type (a certain noun or nominal phrase). The positional information is mainly used

in order to compute:

• N-grams, or collocations: A collocation is a “recurrent combination of words that

co-occur more often than expected by chance and that correspond to arbitrary word
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Figure 6: A screen dump of the system in action: The user can choose which level to

inspect, as well as the type of expressions (e.g., in case of named entities, she can select

“all”, “organisaton”, “date” etc). Then she can browse through the marked up text where

relevant expressions are highlighted by different colours and their output structure is rep-

resented in readable form in an additional window (called “extracted information”). The

user can also constraint the navigation through query filters (like “only visit organizations

containg the substring software” or “show all compound nouns containing the suffix “-

ung”). On each level, the user can inspect the frequency and distribution of the found

elements, and can choose to redirect all extracted information to a set of corresponding

output streams, e.g., simple ASCII or XML format.
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usages” [Smadja, 1993] and they typically are found by computing the probability

of bigrams and trigrams (see also [Charniak, 1993]).

• the history of individual words and its life-cycle, i.e., to get information when a

certain word or phrase was introduced and how often it has been used in a certain

context. The assumption here is that a text fragment with a low frequency (relative

to the complete document) will have a high frequency for some time after it has been

introduced. This information could be used as a basis for inducing domain-specific

terms.

Pure statistical approaches will also be used for unsupervised classification. For ex-

ample, AutoClass [Cheeseman and Stutz, 1996] is a unsupervised Bayesian classification

system that seeks a maximum posterior probability classification. The inputs consist of a

database of attribute vectors, and a class model. The system finds the set of classes that

is maximally probable with respect to the data and model. The output is a set of class

descriptions, and partial membership of the cases in the classes. This approach seems very

promising for term extraction, in case linguistic structure computed by the shallow text

processor is used for defining the attribute set and class model.

4 System implementation and performance

The system has fully been implemented and can process text documents up to several

megabytes very efficiently and robustly. It has already been used in different application

areas ranging from processing of email messages [Busemann et al., 1997], text classification

[Neumann and Schmeier, 1999], text routing in call centers, text data mining, extraction

of business news information (these latter as part of industrial projects), to extraction of

semantic nets on the basis of integrated domain ontologies [Staab et al., 1999].

The current version of the DFKI FSM Tool was implemented in C++ and is available as

an object-oriented C++ library. Most of the algorithms work well with arbitrary semirings

on real numbers, where the general semiring for real numbers is an abstract datatype.

The generic dynamic tries were implemented as a C++ template. Similarly the linguistic

modules of the sppc system were implemented in C++ and can be used separately. The

GUI for sppc was implemented in Borland C++ for Windows NT operating system,

whereas the code for all other tools mentioned above is portable across different platforms

(UNIX , Windows NT/98).
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The system has a very good run-time behaviour: processing of a German text document

(a collection of buisness news articles from the “Wirtschaftswoche”) of 197118 tokens

(1.26 MB) needs 45 seconds on a PentiumII, 266 MHz, 128 RAM, which corresponds

to 4380 words per second. This includes recognition of 10553 named entities and 64666

phrases. Only 6.11% of the lexical items where unknown. Before POS-filtering, 79.35 %

of the lexical items had unique pos, and after POS-filtering 94.37 % got a unique pos

assignment. This means that from the approx. 20% ambiguous words about 75% have

been disambiguated with an accurracy of 97.9%. Concerning named entities (considering

organization, person names and locations) we obtained a precision of 95.77% and a recall

of 85% on a 200KB subset of the mentioned text (90.1% F-measure).

An evaluation tool that determines the quality of the NP-grammar has been developed

to automatically evaluate the coverage of the NP-grammar using the reference corpus (see

above). It is important to notice that the NP-grammar was developed without seeing

the corpus. Moreover, the intended domain was appointment scheduling. The following

matching criteria where used: exact match, start point match, end point match, and a

weighted matching score depending on the size of the overlapping areas. For our evaluation

purposes only the bracketing of simple nominal phrases was used. The following table

summarizes the result:

Criteria: Precision: Recall:

Exact-match 67.5 % 69.7 %

Start-point-match 71.9 % 74.2 %

End-point-Match 86.6 % 89.4 %

The average of these values then represent the global precision value (99.5 %) and the

global recall value (78.6 %).

The verb-group grammar was independently evaluated on a blind test set of 400 sen-

tences (6300 words) achieving an F-measure of 98.59%. With the same test set, the

recognition of the topological sentence structure achieved an F-mesaure of 87.14%.

5 Related work

sppc is mostly related to the shallow text processor of smes, an IE-core system for real

world German text processing [Neumann et al., 1997]. The main differences are the

use of advanced WFSM tools, the name entity finder, and the divide-and-conquer clause

recognizer. To our knowledge, there are only very few other systems described which
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process free German texts. For example [Wauschkuhn, 1996] describes a tool for the

partial analysis of German text documents. He presents a similar divide-and-conquer

approch for parsing using a chart-based parser. However, it is difficult to compare its

performance with our approach because he only measures for an un-annotated test corpus

how often his parser finds at least one result (where he reports 85.7% “coverage” of a

test corpus of 72.000 sentences). However, this result is not very informative because it

does tell nothing about the accuraccy of the parser. In a similar test environment, our

parser achieved a “coverage” of 94.25%. This might be the case because we are using more

advanced lexical and phrasal components, e.g., compound and named entity processing.

[Peh and Ting, 1996] also describe a divide-and-conquer approach following a statistical-

based approach. On an annotated test corpus of 600 English sentences they report an

accuracy of 85.1%.

6 Conclusion and future work

We have presented an advanced domain-independent shallow text extraction and naviga-

tion system for processing of real-world German text. The system is implemented based

on advanced weigthed finite state machines and uses sophisticated linguistic knowledge

sources. The system is very robust and efficient (at least from an application point of

view) and has a good coverage. Currently we focus on the German language but have

started to consider English as well, in order to support multi-lingual shallow text process-

ing. Although the core functionality is the same, it has been shown that the general model

has to be refined if a specific (class of) language has to be processed.
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