Gazetteer Compression Technique
Based on Substructure Recognition

Jan Daciuk! and Jakub Piskorski?

! Technical University of Gdarisk, Ul. Narutowicza 11/12, 80-952 Gdansk, Poland
2 DFKI GmbH, Stuhsatzenhausweg 3, 66123 Saarbriicken, Germany

Abstract. Finite-state automata are state-of-the-art representation of dictionaries
in natural language processing. We present a novel compression technique that is
especially useful for gazetteers — a particular sort of dictionaries. We replace com-
mon substructures in the automaton by unique copies. To find them, we treat a
transition vector as a string, and we apply a Ziv-Lempel-style text compression
technique that uses suffix tree to find repetitions in lineaqr time. Empirical eval-
uation on real-world data reveals space savings of up to 18,6%, which makes this
method highly attractive.

1 Introduction

Finite-state automata (FSAs) are widely used in domains such as integrated
circuit design, natural language processing (NLP), communication protocol
modeling, computer virus detection, and compiler construction. Among NLP
applications, the most prominent are all kinds of dictionaries. FSAs offer both
compact representation and efficient processing.

It has become fashionable in certain circles to ignore space concerns in
computer programs. The protagonists of such view argue that memory gets
cheaper all the time, and when one needs more, one simply buys more. How-
ever, such view is shortsighted. Although modern computers have larger mem-
ories than they used to, the extra space is not wasted; instead, one uses more
data than before. Compression techniques and memory-efficient algorithms
facilitate the use of even more data. Furthermore, as silicon technology ad-
vances, computers are squeezed in increasingly smaller devices that have to
be equipped with even smaller memories.

Although minimization of automata already greatly reduces their size as
compared to non-minimized ones, application of additional compression tech-
niques may result in even more significant space savings. The state-of-the-art
is so advanced, that obtaining further compression is hard. One of potential
direction in this area seems to be an attempt to find repeatable substructures
in automata [6]. Once those substructures are found, it is easy to replace re-
dundant copies with the unique ones. However, finding the substructures is
a daunting task. Perhaps this is why such techniques are rarely used.

In this paper, we propose an algorithm for finding repetitive substructures
in automata in a reasonable time and we apply this technique to compress

2 Jan Daciuk and Jakub Piskorski

gazetteers, special dictionaries that include names of people, organizations,
geographically related information on given places, etc., and which are ex-
tensively used in the area of information extraction. The presented method is
an adaptation of Ziv-Lempel compression applied to a vector of transitions,
and it uses suffix trees for fast lookup of repetitions. The main motivation
for carrying out research in this area was driven by the shortcomings of the
gazetteer look-up component in SProUT — a novel NLP platform [3].

The rest of the paper is structured as follows. In Section 2, we define
deterministic finite-state automata, and we briefly present modern automata
compression techniques. Section 3 introduces suffix trees, which play a crucial
role in our algorithm. The algorithm itself is described in Section 4, and
the results of its application to compression of gazetteers are presented in
Section 5. Conclusions are given in Section 6.

2 Compression of Finite-State Automata

A deterministic finite-state automaton (DFA) is a 5-tuple M = (Q, X, §, qo, F')
where () is a finite set of states, X is a finite set of symbols called the alpha-
bet, § : Q x X' — @ is a transition function, gy € @ is the start (initial) state,
and F C @ is the set of final (accepting) states. We define ¢ to be a partial
function; when 6(q, o) is not defined, we write 6(q,0) = L or d(q,0) € Q. In
the expression §(q,0) = p, ¢ is the source state, o is the label, and p is the
target state. The transition function can be extended to § : Q x X* — Q. The
language L of an automaton M is defined as L(M) = {s € X*|d(qo, s) € F'}.
The automaton is said to accept or to recognize the language. Among all
DFAs that accept a given language, there is one up to isomorphisms that
has fewer states than any other DFA in the group. It is called the minimal
DFA. The process of converting a non-minimal DFA to the minimal one is
called minimization, and it can be done in general case in log-linear time[5].
Minimization is the first step in obtaining a compact automaton.

More reduction in size can be obtained by compression. Clever represen-
tation allows different states to share space. In most space-efficient represen-
tations of automata, states are stored implicitly. The main structure that is
explicitly stored is a transition vector. Information stored in transitions is suf-
ficient to find where the states are located. In a sparse-matrix representation
[10] (see [11] for implementation details), a state is a vector of equal-length
transitions, where each transition is indexed with the ordinal number of its
label. For most European languages, there are 2-7 transitions per state on
average. This means that the vast majority of slots for transitions of a state
are empty. They can be filled with transitions of other states, provided that
it is possible to identify whether a transition belongs to a particular state.
This is achieved by storing labels inside the transitions, even though while
accessing the state, we already know what its label might be. If the label is
different from what is expected, then the state has no transition with that

Gazetteer Compression Technique Based on Substructure Recognition 3

label. The sparse-matrix representation offers reasonable compression and
great recognition speed, but fixed-length and fixed-position transitions make
it difficult to apply further compression techniques.

In a transition-list representation, transitions are stored one after another.
The target state address is the address of the first transition of a state.
The last transition of a state can be marked by a one-bit flag that can be
stored along with some other transition field, e.g., the target address. This
representation allows for many additional compression techniques [7,1] They
include storing one state inside another one, storing some transitions of a
state inside another state, replacing a pointer to the transition situated as
the next in the transition vector with one-bit flag, using shorter relative
pointers, using indirect pointers, etc.

In our experiments, we use the transition-list representation with stan-
dard space-saving techniques known from [7,1] as a baseline memory model.
Additionally, we apply novel Ziv-Lempel-style compression of repeated pat-
terns (see Section 4), which are found via utilization of suffix trees.

3 Suffix Trees

A suffix tree [4, page 90] 7 for an m-character string S is a rooted directed
tree with exactly m leaves numbered 1 to m. Each internal node, other than
the root, has at least two children and each edge is labeled with a non-empty
substring of S. No two edges out of a node can have edge labels beginning
with the same character. For any leaf i, the concatenation of the edge labels
on the path from the root to leaf i exactly spells out the suffix of S that
starts at position i. That is, it spells out S[i...m|. Figure 1 shows a suffix
tree constructed for the word abracadabra. It is possible to construct suffix
trees in linear time [4, Chapter 6].

Fig. 1. Example of a suffix tree for a string abracadabra. $ is used to mark the end
of the string. Nodes ¢ € [1, 11] are leaves corresponding to suffix positions .

4 Jan Daciuk and Jakub Piskorski

Strings spelled out on paths leading from the root to the internal nodes of
a suffix tree are common prefixes of suffixes of the original string S. In other
words, they are substrings that occur more than once in the string S. Fach
edge that does not end in a leaf is part of such a substring. For example,
in Figure 1, the string abra is spelled out on a path from root (node 16) to
internal node 12. Because there are two leaves beneath node 12 (nodes 1 and
8), the string abra occurs twice in abracadabra (at 1 and 8).

The idea behind using a suffix tree for finding repetitions in an automaton
is to treat a transition vector of an automaton as the string .S, where each
state (a sequence of transitions) corresponds to a single letter in S. Once a
suffix tree for such S is constructed, edge labels of a path leading from the
root to any internal node correspond to a state sequence which occurs more
than once in the transition vector. Note that we do not explicitly store edge
labels in the tree. Instead, each edge is associated with a pair (f,1), where
f is the index of the first state (equivalent to the first letter) of the label in
the transition vector and [is the length of the edge measured in the number
of bytes. Since edge labels leading to internal nodes occur in the transition
vector more than once, f points to the first occurrence of the corresponding
state sequence.

4 Ziv-Lempel-Style Compression

Finding all substructures that repeat themselves in an automaton is time-
consuming. We opted for a sub-optimal solution that can be obtained in
reasonable time. We treat the transition vector of an automaton as a text,
and use conventional Ziv-Lempel-style text compression technique to find and
replace repetitions. There is a substantial difference between our approach
and the more general one. The results we obtain depend much on the place-
ment of transitions in the transition vector, which can be arbitrary. Different
placements give different results, and we undoubtedly miss many candidates
for replacements, simply because they happened to be placed in such a way
that our technique could not detect them.

At first glance, it may seem that using a text compression technique to
reduce the size of an automaton is clearly wrong. To process an automaton,
random access to its parts is necessary. To decompress a part of a text, one
must read not only the desired passage, but everything that precedes it as
well. However, the necessity of reading everything from the start comes from
two factors. Firstly, we need to determine the location of the desired passage
in the compressed text. Secondly, compressed parts of text are replaced with
pointers to earlier occurrences of the same sequences of characters, so those
sequences need to be already known.

We replace a sequence of states with a single pseudo transition, pointing
to the first occurrence of the same sequence. The pseudo transition stores the
address and the length of the earlier occurrence. We do not need to read it

Gazetteer Compression Technique Based on Substructure Recognition 5

in advance; it can be done when the pseudo transition is encountered while
traversing an automaton. While an automaton is processed, we always start
with the initial state. The address of the next state to go to (the address of
its first transition in the transition-list representation we use) is stored in a
transition being followed. So there is always a chain of transitions leading to
the desired state. Despite compression, it is always easy and fast to find the
target state.

When running the automaton, as a pseudo transition is found instead of
a state, the current address is put on the stack along with the address and
the length of the replacing sequence. As long as the control stays inside the
replacing sequence, that information is kept on the stack. If the sequence is
left by following an absolute pointer, the record on stack is simply dropped.
Otherwise, it is popped from the stack and used to determine the next address
to visit.

We cannot, however, replace just arbitrary sequences of bytes in the tran-
sition vector. Those sequences must form states. Moreover, we cannot sanc-
tion references from outside the replaced sequence to its inside (references to
the beginning are correct). If we were to accept such references, there would
be no way to know whether the control is inside an earlier occurrence of
the target sequence, and — as a consequence — whether the control should
be returned to some other place when crossing the sequence border. How-
ever, our strategy of replacing only whole states prevents outside references
inside replaced sequences from happening. Such references cannot lead to
whole states, because the states sharing space in the subsequences would be
equivalent, so they would be removed by minimization.

Replacement of sequences of whole states and not arbitrary bytes is
achieved by treating states as letters in a string, even though we can ad-
dress individual bytes in the transition vector. To implement that, we must
store the length of the first state labeling each edge of the suffix tree.

We use the compression algorithm 1 from [4, page 165] to perform re-
placements. The repeated sequence s may be spelled out on a path Il =
(e1,ea,...,€ex) consisting of more than one edge in the suffix tree. Let (f;,1;)
be the pair (index, length) associated with e; in IT recognizing the sequence
s. To find the index of the first occurrence of s in the transition vector, we
must calculate fr — Ui‘:f l;. The length of the sequence is Ule l;.

The original (string) compression algorithm from [4] runs in linear time.
Therefore, we only need to show that our modifications do not change that
complexity. Since we do not have to check for external references, we do not
perform it. Processing the whole states means that whenever we compare
single characters in the original algorithm, we compare states — sequences
of transitions — in our method. A transition is also a sequence of bytes, but
its length is limited by the size of a character, the size of a pointer, and the
size of additional flags. The number of transitions of a state is also limited,
but with large alphabets, it can also be large, and we have to take it into

6 Jan Daciuk and Jakub Piskorski

account. Since the transition table contains references to states (pointers),
we have to update them as well. All replacements are kept in a hash table,
so that finding an address is done in constant time. Updating all references
requires one pass over the whole transition table, so it is done in linear time.
This makes our algorithm run in O(n|X|) time.

5 Experiments

We carried out several experiments of applying the compression strategy
described in the last section to gazetteers, dictionaries including names of
people, organizations, locations and other named entities, which are utilized
in the preprocessing phase of information extraction systems. For the sake
of clarity, we first shortly elaborate on the specific nature of gazetteers and
the fashion in which they can be converted into corresponding finite-state
representations.

Raw gazetteer resources are usually represented by a text file, where each
line of such a file represents a single gazetteer entry in the following format:
keyword (attribute:value)+, i.e., each keyword is associated with a list
of arbitrary attribute-value pairs. At first glance, such a format resembles
the format of morphological dictionaries. However, there is one major differ-
ence, namely, attribute values in gazetteers frequently happen to be natural
language words which are not necessarily inflected or derived forms of the
keyword as the following example demonstrates (e.g., location).

Washington | type:region | variant:WASHINGTON
| location:USA | subtype:state

Consequently, standard ways of turning such data into finite-state dictio-
naries via treating a single entry as a single path in an automaton [8] may
not yield the best choice in terms of space complexity. In [9] we reported on a
method for converting such raw gazetteers into a single automaton, resulting
in a surprisingly good compression rate. We sketch it here briefly. Firstly, note
that we differentiate between open-class and closed-class attributes, depend-
ing on their range of values, e.g., variant is an open-class attribute, whereas
subtype is a closed-class attribute. The main idea behind transforming a
gazetteer into a single automaton is to split each entry into a disjunction of
subentries, each representing some partial information. For each open-class
attribute-value pair present in the entry, a single subentry is created, whereas
closed-class attribute-value pairs are merged into a single subentry and rear-
ranged in order to fulfill the first most specific, last most general criterion.
In our example, for the word Washington we get

Washington #1 NAME(subtype) VAL(state) NAME(type) VAL(region)
Washington #1 NAME(variant) WASHINGTON
Washington #1 NAME(location) USA

Gazetteer Compression Technique Based on Substructure Recognition 7

where NAME and VAL map attribute names and values of the closed-class at-
tributes into single univocal characters representing them. The tag #1 denotes
the interpretation ID of the keyword Washington (there could be many entries
with this keyword). Subsequently, some attribute values are replaced by for-
mation patterns (e.g., WASHINGTON is just a capitalized version of Washington
which can be represented as a single symbol). Finally, the data obtained in
this manner is compiled via application of the incremental algorithm for con-
structing minimal deterministic automaton from a list of strings in linear
time [2]. A comprehensive description of the outlined encoding strategy can
be found in [9].

For the evaluation of the compression method presented in Section 4, we
have selected the following data: (a) LT-World — a gazetteer of key players
and events in language technology community including persons, organiza-
tions, facilities, conferences, etc., extracted from http://www.lt-world.org.
(b) PL-NE — a gazetteer of Polish MUC-like type named-entities, (¢) Mixed
— a combination of the resources in (a) and (b), and (d) GeoNames —
an excerpt of the huge gazetteer of geographic names information cover-
ing countries and geopolitical areas, including complex information on name
variants, acronyms, language, administrative divisions, dimension, etc., taken
from http://earth-info.nga.mil/gns/html/. Table 1 gives an overview of our
test data.

Gazetteer size|#entries |#attributes|#open-class| average
name attributes |entry length
LT—World 4,154 96837 19 14 40
PL-NE 2,809 51631 8 3 52
Mixed 6,957| 148468 27 17 44
GeoNames I [13,590 80001 17 6 166
GeonNames 1T|33,500 20001 17 6 164

Table 1. Parameters of test gazetteers.

Now let us turn to the experiments concerning recognition of substruc-
tures in the automata obtained in the way described at the beginning of
this section. In our baseline automata implementation (B), we deploy the
transition-list representation described in Section 2, where each transition
is represented solely as quintuple consisting of a transition label, three bits
marking: (a) whether the transition is final, (b) whether it is the last transi-
tion of the current state and (c) whether the first transition of the target state
is the next one in the transition list, and a (possibly) empty pointer to the
first outgoing transition of the target state. That representation already en-
sures good compression rate (see [1] for details). Next, we have implemented a
variant with relative addressing (BR), i.e., for transitions whose target states
(index of the first transition of the target state) are stored within a window
of 255 bytes, we use relative pointers, which intuitively leads to some space

8 Jan Daciuk and Jakub Piskorski

savings. Finally, we applied the compression technique presented in Section 4
to both (B) and (BR) variants. We denote the resulting representations with
(BS) and (BRS) respectively. The results in terms of automata size (num-
ber of states and transitions) and obtained compression ratios are given in
Table 2. In particular, the columns labeled with KB and CR stand for the
size of the physical storage in kilobytes and compression ratio compared to
the baseline memory model (B). The number of state-sequence replacements
is given in the column labeled with #RP. As we can observe, the overall
best compression can be obtained by combining relative addressing and the
presented suffix-tree-based substructure recognition procedure.

Gazetteer B BR BS BRS
KB Q] [0] KB [CR|] #RP [KB [CR]|| #RP [KB [CR
(%) (%) (%)

PL-NE 347 | 62073 | 100212 || 326 |6.1|| 4043 | 324 |6.6|] 4133 | 293 |15,6
LT-World ||1031| 264730 | 347075 || 975 | 5.4 || 27019 | 944 | 8.4 || 27386 | 843 |18,2
Mixed 1227| 305722 | 407700 ||1160|5.5|| 30279 [1121]8.6 || 30756 | 999 |18,6
Geo-1 3840| 684707 [1135898(|3677|4.2 || 72854 [3468|9.7|| 80368 |3138|18,3
Geo-I1 8611|1373344(2454216(|8281| 3.8 |[145825|7948|7.7(/164 662|7264|15,6

Table 2. Size of the four types of automata.

6 Conclusions

Finite-state automaton is a uniform data structure, widely used for imple-
menting dictionaries of any kind. In this paper, we have presented an ad-
vanced technique for compressing automata in linear time. This method uti-
lizes suffix trees for finding repeating substructures in an automaton. Con-
sequently, only the first occurrences of such substructures are represented
explicitly in the automaton, whereas any further occurrences are represented
via pseudo transitions, pointing to a fully-fledged representation.

We have evaluated the introduced compression strategy by applying it to
real-world gazetteers, special dictionaries widely used in the area of informa-
tion extraction. A compression ratio of up to 18,6% can be observed when
combining this technique with relative addressing of transitions. Although,
the presented results are quite impressive, another line of experiments will
focus on applying this method to various transition orderings, which might
yield better or at least different results. Finally, we envisage to investigate
how the obtained compression is penalized in terms of processing speed.

References

1. Daciuk J., (2000). Experiments with Automata Compression. Proceedings
of CTAA - Implementation and Application of Automata, London, Ontario,
Canada, 105-112

Gazetteer Compression Technique Based on Substructure Recognition 9

. Daciuk J., Mihov S., Watson B., Watson R., (2000). Incremental Construction
of Minimal Acyclic Finite State Automata. Computational Linguistics, 26(1),
pages 3—16

. Drozdzynski, W., Krieger H-U., Piskorski, J., Schéfer, U., Xu, F. Shallow Pro-
cessing with Unification and Typed Feature Structures — Foundations and Ap-
plications. In Kiinstliche Intelligenz, 2004(1), pages 17-23

. Dan Gusfield, (1997). Algorithms on Strings, Trees, and Sequences. Cambridge
University Press.

. Hopcroft J., (1971). An nlogn Algorithm for Minimizing the states in a Finite
Automaton. The Theory of Machines and Computations, Academic Press, 189—
196.

. Nederhof, M.-J., (2000). Practical experiments with regular approximation of
context-free languages. Journal of Computational Linguistics, 26(1), pages 17—
44

. Kowaltowski T, Lucchesi C. and Stolfi J., (1993). Minimization of Binary Au-
tomata. Proceedings of the First South American String Processing Workshop,
Belo Horizonte, Brasil.

. Kowaltowski T., Lucchesi C., Stolfi J., (1998). Finite Automata and Efficient
Lexicon Implementation. Technical Report 1C-98-02, University of Campinas,
Brazil.

. Piskorski J., (2005). On Compact Storage Models for Gazetteers. Proceedings of
the 5th International Workshop on Finite-State Methods and Natural Language
Processing, Helsinki, Finland, Springer LNAI.

10. Revuz D., (1991). Dictionnaires et Lexiques, Méthodes et Algorithmes. PhD

Thesis, Université Paris 7.

11. Tarjan R, and Andrew Chi-Chih Yao. (1979) Storing a sparse table. Commun.

ACM. 22(11), ACM Press

